Skip to main content

Compact Optimization Algorithms with Re-Sampled Inheritance

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2019)

Abstract

Compact optimization algorithms are a class of Estimation of Distribution Algorithms (EDAs) characterized by extremely limited memory requirements (hence they are called “compact”). As all EDAs, compact algorithms build and update a probabilistic model of the distribution of solutions within the search space, as opposed to population-based algorithms that instead make use of an explicit population of solutions. In addition to that, to keep their memory consumption low, compact algorithms purposely employ simple probabilistic models that can be described with a small number of parameters. Despite their simplicity, compact algorithms have shown good performances on a broad range of benchmark functions and real-world problems. However, compact algorithms also come with some drawbacks, i.e. they tend to premature convergence and show poorer performance on non-separable problems. To overcome these limitations, here we investigate a possible algorithmic scheme obtained by combining compact algorithms with a non-disruptive restart mechanism taken from the literature, named Re-Sampled Inheritance (RI). The resulting compact algorithms with RI are tested on the CEC 2014 benchmark functions. The numerical results show on the one hand that the use of RI consistently enhances the performances of compact algorithms, still keeping a limited usage of memory. On the other hand, our experiments show that among the tested algorithms, the best performance is obtained by compact Differential Evolution with RI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Detailed numerical results are available at: http://www.cse.dmu.ac.uk/~fcaraf00/NumericalResults/RICompactOptResults.pdf.

References

  1. Neri, F., Iacca, G., Mininno, E.: Compact optimization. In: Zelinka, I., Snášel, V., Abraham, A. (eds.) Handbook of Optimization. Intelligent Systems Reference Library, vol. 38, pp. 337–364. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30504-7_14

    Chapter  Google Scholar 

  2. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Boston (2001)

    MATH  Google Scholar 

  3. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE Trans. Evol. Comput. 3(4), 287–297 (1999)

    Article  Google Scholar 

  4. Corno, F., Reorda, M.S., Squillero, G.: The selfish gene algorithm: a new evolutionary optimization strategy. In: ACM Symposium on Applied Computing, pp. 349–355 (1998)

    Google Scholar 

  5. Ahn, C.W., Ramakrishna, R.S.: Elitism-based compact genetic algorithms. IEEE Trans. Evol. Comput. 7(4), 367–385 (2003)

    Article  Google Scholar 

  6. Gallagher, J.C., Vigraham, S., Kramer, G.: A family of compact genetic algorithms for intrinsic evolvable hardware. IEEE Trans. Evol. Comput. 8(2), 111–126 (2004)

    Article  Google Scholar 

  7. Mininno, E., Cupertino, F., Naso, D.: Real-valued compact genetic algorithms for embedded microcontroller optimization. IEEE Trans. Evol. Comput. 12(2), 203–219 (2008)

    Article  Google Scholar 

  8. Mininno, E., Neri, F., Cupertino, F., Naso, D.: Compact differential evolution. IEEE Trans. Evol. Comput. 15(1), 32–54 (2011)

    Article  Google Scholar 

  9. Iacca, G., Mallipeddi, R., Mininno, E., Neri, F., Suganthan, P.N.: Global supervision for compact differential evolution. In: IEEE Symposium on Differential Evolution, pp. 1–8 (2011)

    Google Scholar 

  10. Iacca, G., Mallipeddi, R., Mininno, E., Neri, F., Suganthan, P.N.: Super-fit and population size reduction in compact differential evolution. In: IEEE Workshop on Memetic Computing, pp. 1–8 (2011)

    Google Scholar 

  11. Iacca, G., Caraffini, F., Neri, F.: Compact differential evolution light: high performance despite limited memory requirement and modest computational overhead. J. Comput. Sci. Technol. 27(5), 1056–1076 (2012)

    Article  MathSciNet  Google Scholar 

  12. Iacca, G., Mininno, E., Neri, F.: Composed compact differential evolution. Evol. Intel. 4(1), 17–29 (2011)

    Article  Google Scholar 

  13. Iacca, G., Neri, F., Mininno, E.: Opposition-based learning in compact differential evolution. In: Di Chio, C., et al. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 264–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20525-5_27

    Chapter  Google Scholar 

  14. Iacca, G., Neri, F., Mininno, E.: Noise analysis compact differential evolution. Int. J. Syst. Sci. 43(7), 1248–1267 (2012)

    Article  Google Scholar 

  15. Jewajinda, Y.: Covariance matrix compact differential evolution for embedded intelligence. In: IEEE Region 10 Symposium, pp. 349–354 (2016)

    Google Scholar 

  16. Mallipeddi, R., Iacca, G., Suganthan, P.N., Neri, F., Mininno, E.: Ensemble strategies in compact differential evolution. In: IEEE Congress on Evolutionary Computation, pp. 1972–1977 (2011)

    Google Scholar 

  17. Neri, F.: Memetic compact differential evolution for cartesian robot control. IEEE Comput. Intell. Mag. 5(2), 54–65 (2010)

    Article  Google Scholar 

  18. Neri, F., Iacca, G., Mininno, E.: Disturbed exploitation compact differential evolution for limited memory optimization problems. Inf. Sci. 181(12), 2469–2487 (2011)

    Article  MathSciNet  Google Scholar 

  19. Neri, F., Mininno, E., Iacca, G.: Compact particle swarm optimization. Inf. Sci. 239, 96–121 (2013)

    Article  MathSciNet  Google Scholar 

  20. Iacca, G., Neri, F., Mininno, E.: Compact bacterial foraging optimization. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) EC/SIDE -2012. LNCS, vol. 7269, pp. 84–92. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29353-5_10

    Chapter  Google Scholar 

  21. Yang, Z., Li, K., Guo, Y.: A new compact teaching-learning-based optimization method. In: Huang, D.-S., Jo, K.-H., Wang, L. (eds.) ICIC 2014. LNCS (LNAI), vol. 8589, pp. 717–726. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09339-0_72

    Chapter  Google Scholar 

  22. Yang, Z., Li, K., Guo, Y., Ma, H., Zheng, M.: Compact real-valued teaching-learning based optimization with the applications to neural network training. Knowl.-Based Syst. 159, 51–62 (2018)

    Article  Google Scholar 

  23. Banitalebi, A., Aziz, M.I.A., Bahar, A., Aziz, Z.A.: Enhanced compact artificial bee colony. Inf. Sci. 298, 491–511 (2015)

    Article  Google Scholar 

  24. Dao, T.-K., Chu, S.-C., Nguyen, T.-T., Shieh, C.-S., Horng, M.-F.: Compact artificial bee colony. In: Ali, M., Pan, J.-S., Chen, S.-M., Horng, M.-F. (eds.) IEA/AIE 2014. LNCS (LNAI), vol. 8481, pp. 96–105. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07455-9_11

    Chapter  Google Scholar 

  25. Dao, T.K., Pan, T.S., Nguyen, T.T., Chu, S.C., Pan, J.S.: A compact flower pollination algorithm optimization. In: International Conference on Computing Measurement Control and Sensor Network, pp. 76–79 (2016)

    Google Scholar 

  26. Iacca, G., Caraffini, F., Neri, F., Mininno, E.: Robot base disturbance optimization with compact differential evolution light. In: Di Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 285–294. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29178-4_29

    Chapter  Google Scholar 

  27. Dao, T.K., Pan, T.S., Nguyen, T.T., Chu, S.C.: A compact artificial bee colony optimization for topology control scheme in wireless sensor networks. J. Inf. Hiding Multimed. Signal Process. 6(2), 297–310 (2015)

    Google Scholar 

  28. Caraffini, F., Iacca, G., Neri, F., Picinali, L., Mininno, E.: A CMA-ES super-fit scheme for the re-sampled inheritance search. In: IEEE Congress on Evolutionary Computation, pp. 1123–1130 (2013)

    Google Scholar 

  29. Caraffini, F., Neri, F., Passow, B.N., Iacca, G.: Re-sampled inheritance search: high performance despite the simplicity. Soft Comput. 17(12), 2235–2256 (2013)

    Article  Google Scholar 

  30. Caraffini, F., Iacca, G., Yaman, A.: Improving (1+1) covariance matrix adaptation evolution strategy: a simple yet efficient approach. In: International Global Optimization Workshop (2018)

    Google Scholar 

  31. Liang, J., Qu, B., Suganthan, P.: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, Computational Intelligence Laboratory (2013)

    Google Scholar 

  32. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: framework and applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 272, pp. 363–397. Springer, Cham (2010). https://doi.org/10.1007/978-3-319-91086-4_5

    Chapter  Google Scholar 

  33. Garcia, S., Fernandez, A., Luengo, J., Herrera, F.: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Comput. 13(10), 959–977 (2008)

    Article  Google Scholar 

  34. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6(2), 65–70 (1979)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 665347.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Iacca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iacca, G., Caraffini, F. (2019). Compact Optimization Algorithms with Re-Sampled Inheritance. In: Kaufmann, P., Castillo, P. (eds) Applications of Evolutionary Computation. EvoApplications 2019. Lecture Notes in Computer Science(), vol 11454. Springer, Cham. https://doi.org/10.1007/978-3-030-16692-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16692-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16691-5

  • Online ISBN: 978-3-030-16692-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics