Skip to main content

Incremental Algorithm Based on Split Technique

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2018 2018)

Abstract

Most clustering algorithms become ineffective when provided with unsuitable parameters or applied to data-sets which are composed of clusters with diverse shapes, sizes, and densities.

In our paper we present a new version of k-means method, that allows adding one new cluster to the k cluster we already had with out retraining from scratch. This method is based on the splitting process, we are looking for the cluster that had the highest score to be split, our score is based on three criteria; SSE, Dispersion-index and the size of cluster. Finally, the split process is performed by using standard K. Experimental results demonstrate the effectiveness of our approach both on simulated and real data-sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clarke, K.R., Chapman, M.G., Somerfield, P.J., Needham, H.R.: Dispersion-based weighting of species counts in assemblage analyses

    Google Scholar 

  2. Yadav, A., Dhingra, S.: A review on K-means clustering technique. Int. J. Latest Res. Sci. Technol. 5(4), 13–16 (2016)

    Google Scholar 

  3. Zhou, P.Y., Chan, K.C.C.: A model-based multivariate time series clustering algorithm. In: Peng, W.-C., et al. (eds.) PAKDD 2014 Workshops. LNAI, vol. 8643, pp. 805–817. Springer, Cham (2014)

    Google Scholar 

  4. Dalatu, P.I., Fitrianto, A., Mustapha, A.: Hybrid distance functions for K-means clustering algorithms. Stat. J. IAOS 33, 989–996 (2017)

    Article  Google Scholar 

  5. Strauss, T., Von Maltitz, M.J.: Generalising ward’s method for use with Manhattan distances. PLoS One 12(1), e0168288 (2017)

    Article  Google Scholar 

  6. Surya Prasath, V.B., Alfeilat, H.A.A., Lasassmeh, O., Hassanat, A.B.A.: Distance and similarity measures effect on the performance of k-nearest neighbor classifier a review. Preprint submitted to Elsevier, 16 August 2017

    Google Scholar 

  7. Li, X., Han, Q., Qiu, B.: A clustering algorithm with affine space-based boundary detection. Appl. Intell. 2, 1–13 (2017)

    Google Scholar 

  8. Tong, Q., Li, X., Yuan, B.: A highly scalable clustering scheme using boundary information. Pattern Recognit. Lett. 89, 1–7 (2017)

    Article  Google Scholar 

  9. Patil, R.R., Khan, A.: Bisecting K-means for clustering web log data. Int. J. Comput. Appl. 116(19), 36–41 (2015)

    Google Scholar 

  10. Capó, M., Pérez, A., Lozano, J.A.: An efficient K-means clustering algorithm for massive data. J. Latex Class Files 14(8) (2015)

    Google Scholar 

  11. Han, J., Kamber, M.: Data Mining Concepts and Techniques, 2nd edn. Morgan Kaufmann Publishers, Burlington (2006). Fast kernel classifiers with online and active learning 6, 1579–1619

    MATH  Google Scholar 

  12. Mall, R., Ahmad, M., Lamirel, J.: Comportement comparatif des methodes de clustering incrmentales et non incrmentales sur les donnes textuelles htrogenes (2014)

    Google Scholar 

  13. Bao, J., Wang, W., Yang, T., Wu, G.: An incremental clustering method based on the boundary profile. PLoS One 13(4) (2018)

    Article  Google Scholar 

  14. Zhang, Y., Li, K., Gu, H., Yang, D.: Adaptive split-and-merge clustering algorithm for wireless sensor networks. In: International Workshop on Information and Electronics Engineering (IWIEE) (2012)

    Article  Google Scholar 

  15. Savaresi, M., Boley, D., Bittanti, S., Gazzaniga, G.: Choosing the cluster to split in bisecting divisive clustering algorithms

    Google Scholar 

  16. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall Advance Reference Series. Prentice-Hall, Upper Saddle Rive (1988)

    MATH  Google Scholar 

  17. Thinsungnoena, T., Kaoungkub, N., Durongdumronchaib, P., Kerdprasopb, K., Kerdprasopb, N.: The clustering validity with silhouette and sum of squared errors. In: Proceedings of the 3rd International Conference on Industrial Application Engineering (2015)

    Google Scholar 

  18. Bache, K., Lichman, M.: (UCI) machine learning repository (2013) http://archive.ics.uci.edu/ml

  19. Rijn, J.V. (2014). https://www.openml.org/d/268

  20. Brahmi, P.I., Ben Yahia, S.: Detection des anomalies base sur le clustering (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chedi Ounali , Fahmi Ben Rejab or Kaouther Nouira Ferchichi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ounali, C., Ben Rejab, F., Nouira Ferchichi, K. (2020). Incremental Algorithm Based on Split Technique. In: Abraham, A., Cherukuri, A., Melin, P., Gandhi, N. (eds) Intelligent Systems Design and Applications. ISDA 2018 2018. Advances in Intelligent Systems and Computing, vol 941. Springer, Cham. https://doi.org/10.1007/978-3-030-16660-1_55

Download citation

Publish with us

Policies and ethics