Skip to main content

Cell Biology of Vessels

  • Chapter
  • First Online:
Textbook of Vascular Medicine

Abstract

The vascular system comprises large-, medium- and small-sized vessels, classified as arteries or veins. This system is extremely diverse in structure, architecture and physiology. The vascular wall is composed of three layers: intima, media and adventitia. The intima layer is mainly formed by a monolayer of endothelial cells, which are important to the regulation of vascular smooth cell relaxation and contraction by the production of endothelial-derived relaxing and constricting factors. The media layer is mostly composed by vascular smooth muscle cells that play a major role in changes of vascular diameter and maintenance of vascular tone. In the adventitia, the perivascular adipose tissue has been described as an important regulator of vascular function and inflammation. In this chapter, we will describe the phenotype of endothelial cells, vascular smooth muscle cells and perivascular adipose tissue, focusing on their role to maintain vascular tone and integrity in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev. 2004;56(4):549–80.

    Article  CAS  Google Scholar 

  2. Chi JT, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS, et al. Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci U S A. 2003;100(19):10623–8.

    Article  CAS  Google Scholar 

  3. Zhao Y, Vanhoutte PM, Leung SW. Vascular nitric oxide: beyond eNOS. J Pharmacol Sci. 2015;129(2):83–94.

    Article  CAS  Google Scholar 

  4. Ozkor MA, Quyyumi AA. Endothelium-derived hyperpolarizing factor and vascular function. Cardiol Res Pract. 2011;2011:156146.

    Article  Google Scholar 

  5. Goto K, Ohtsubo T, Kitazono T. Endothelium-Dependent Hyperpolarization (EDH) in hypertension: the role of endothelial ion channels. Int J Mol Sci. 2018;19(1):E315.

    Article  Google Scholar 

  6. Kohan DE, Rossi NF, Inscho EW, Pollock DM. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev. 2011;91(1):1–77.

    Article  CAS  Google Scholar 

  7. Mehta D, Ravindran K, Kuebler WM. Novel regulators of endothelial barrier function. Am J Physiol Lung Cell Mol Physiol. 2014;307(12):L924–35.

    Article  CAS  Google Scholar 

  8. Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007;7(10):803–15.

    Article  CAS  Google Scholar 

  9. Hilenski LL, Griendling KK. Vascular smooth muscle. Vascular medicine: a companion to Braunwald’s heart disease. 2nd ed. Philadelphia: WB Saunders; 2013. p. 25–42.

    Book  Google Scholar 

  10. Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84(3):767–801.

    Article  CAS  Google Scholar 

  11. Rensen SS, Doevendans PA, van Eys GJ. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J. 2007;15(3):100–8.

    Article  CAS  Google Scholar 

  12. Moiseeva EP. Adhesion receptors of vascular smooth muscle cells and their functions. Cardiovasc Res. 2001;52(3):372–86.

    Article  CAS  Google Scholar 

  13. Rzucidlo EM. Signaling pathways regulating vascular smooth muscle cell differentiation. Vascular. 2009;17(Suppl 1):S15–20.

    Article  Google Scholar 

  14. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216–9.

    Article  CAS  Google Scholar 

  15. Touyz RM, Alves-Lopes R, Rios FJ, Camargo LL, Anagnostopoulou A, Arner A, Montezano AC. Vascular smooth muscle contraction in hypertension. Cardiovasc Res. 2018;114(4):529–39.

    Article  CAS  Google Scholar 

  16. Lian X, Gollasch M. A clinical perspective: contribution of dysfunctional perivascular adipose tissue (PVAT) to cardiovascular risk. Curr Hypertens Rep. 2016;18(11):82.

    Article  Google Scholar 

  17. Costa RM, Neves KB, Tostes RC, Lobato NS. Perivascular adipose tissue as a relevant fat depot for cardiovascular risk in obesity. Front Physiol. 2018;9:253.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rhian M. Touyz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alves-Lopes, R., Touyz, R.M., Montezano, A.C. (2019). Cell Biology of Vessels. In: Touyz, R., Delles, C. (eds) Textbook of Vascular Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-16481-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16481-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16480-5

  • Online ISBN: 978-3-030-16481-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics