Skip to main content

Microparticles and Exosomes in Cell-Cell Communication

  • Chapter
  • First Online:
Textbook of Vascular Medicine

Abstract

Growing evidence indicates that cells are able to communicate with neighbouring and distant cells in the body by production of extracellular vesicles (EV). EV are classified according to their size and mechanisms of formation. Exosomes and microparticles are the most extensively studied clinically relevant forms of EV, and they often reflect the activation status of the parent cell, by carrying similar surface markers and cargo. Because of these molecular characteristics, EV are considered to be mediators of cell activation by transferring molecules (e.g., proteins, lipids, and nucleic acids) to neighbouring or distant cell populations. Increased levels of circulating EV have been observed in various diseases, including hypertension, atherosclerosis, kidney diseases, and cancer. In this chapter, we will address the formation of different EV and their importance in cell-cell communication, controlling basic cellular functions in homeostatic and pathologic conditions associated with cardiovascular diseases. In addition, we highlight their role as biomarkers and discuss the potential of EV as therapeutic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.

    Article  CAS  Google Scholar 

  2. Burger D, et al. Microparticles: biomarkers and beyond. Clin Sci (Lond). 2013;124(7):423–41.

    Article  CAS  Google Scholar 

  3. Kowal J, Tkach M, Thery C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116–25.

    Article  CAS  Google Scholar 

  4. Xu R, et al. Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest. 2016;126(4):1152–62.

    Article  Google Scholar 

  5. Roucourt B, et al. Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res. 2015;25(4):412–28.

    Article  CAS  Google Scholar 

  6. Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 2017;27(3):172–88.

    Article  CAS  Google Scholar 

  7. Villarroya-Beltri C, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:2980.

    Article  Google Scholar 

  8. Chevillet JR, et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci U S A. 2014;111(41):14888–93.

    Article  CAS  Google Scholar 

  9. Loyer X, et al. Microvesicles as cell-cell messengers in cardiovascular diseases. Circ Res. 2014;114(2):345–53.

    Article  CAS  Google Scholar 

  10. de Jong OG, et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles. 2012;1

    Google Scholar 

  11. Xie Z, et al. Adipose-derived exosomes exert proatherogenic effects by regulating macrophage foam cell formation and polarization. J Am Heart Assoc. 2018;7(5):e007442.

    Article  Google Scholar 

  12. Qin B, et al. MicroRNA-150 targets ELK1 and modulates the apoptosis induced by ox-LDL in endothelial cells. Mol Cell Biochem. 2017;429(1–2):45–58.

    Article  CAS  Google Scholar 

  13. Nguyen MA, et al. Extracellular vesicles secreted by atherogenic macrophages transfer microRNA to inhibit cell migration. Arterioscler Thromb Vasc Biol. 2018;38(1):49–63.

    Article  CAS  Google Scholar 

  14. Vinas JL, et al. Transfer of microRNA-486-5p from human endothelial colony forming cell-derived exosomes reduces ischemic kidney injury. Kidney Int. 2016;90(6):1238–50.

    Article  CAS  Google Scholar 

  15. Gomes CPC, et al. The function and therapeutic potential of long non-coding RNAs in cardiovascular development and disease. Mol Ther Nucl Acids. 2017;8:494–507.

    Article  CAS  Google Scholar 

  16. Shan K, et al. Role of long non-coding RNA-RNCR3 in atherosclerosis-related vascular dysfunction. Cell Death Dis. 2016;7(6):e2248.

    Article  CAS  Google Scholar 

  17. Sun Z, et al. Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. Mol Cancer. 2018;17(1):82.

    Article  Google Scholar 

  18. Madrigal-Matute J, et al. Thioredoxin-1/peroxiredoxin-1 as sensors of oxidative stress mediated by NADPH oxidase activity in atherosclerosis. Free Radic Biol Med. 2015;86:352–61.

    Article  CAS  Google Scholar 

  19. Pironti G, et al. Circulating exosomes induced by cardiac pressure overload contain functional angiotensin II type 1 receptors. Circulation. 2015;131(24):2120–30.

    Article  CAS  Google Scholar 

  20. Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 2004;101(36):13368–73.

    Article  CAS  Google Scholar 

  21. Choi DS, et al. Proteomics of extracellular vesicles: exosomes and ectosomes. Mass Spectrom Rev. 2015;34(4):474–90.

    Article  CAS  Google Scholar 

  22. Qi Y, et al. Activation of the endogenous renin-angiotensin-aldosterone system or aldosterone administration increases urinary exosomal sodium channel excretion. J Am Soc Nephrol. 2016;27(2):646–56.

    Article  CAS  Google Scholar 

  23. Jella KK, et al. Exosomal GAPDH from proximal tubule cells regulate ENaC activity. PLoS One. 2016;11(11):e0165763.

    Article  Google Scholar 

  24. Gracia T, et al. Urinary exosomes contain MicroRNAs capable of paracrine modulation of tubular transporters in kidney. Sci Rep. 2017;7:40601.

    Article  CAS  Google Scholar 

  25. Burger D, et al. High glucose increases the formation and pro-oxidative activity of endothelial microparticles. Diabetologia. 2017;60(9):1791–800.

    Article  CAS  Google Scholar 

  26. Ghosh A, et al. Platelet CD36 mediates interactions with endothelial cell-derived microparticles and contributes to thrombosis in mice. J Clin Invest. 2008;118(5):1934–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Montecalvo A, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119(3):756–66.

    Article  CAS  Google Scholar 

  28. Burger D, et al. Microparticles induce cell cycle arrest through redox-sensitive processes in endothelial cells: implications in vascular senescence. J Am Heart Assoc. 2012;1(3):e001842.

    Article  Google Scholar 

  29. Burger D, et al. Endothelial microparticle-derived reactive oxygen species: role in endothelial signaling and vascular function. Oxidative Med Cell Longev. 2016;2016:5047954.

    Article  Google Scholar 

  30. Shimoda M, Khokha R. Metalloproteinases in extracellular vesicles. Biochim Biophys Acta. 2017;1864(11 Pt A):1989–2000.

    Article  CAS  Google Scholar 

  31. Bourdonnay E, et al. Transcellular delivery of vesicular SOCS proteins from macrophages to epithelial cells blunts inflammatory signaling. J Exp Med. 2015;212(5):729–42.

    Article  CAS  Google Scholar 

  32. Amabile N, et al. Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study. Eur Heart J. 2014;35(42):2972–9.

    Article  CAS  Google Scholar 

  33. Amabile N, et al. Predictive value of circulating endothelial microparticles for cardiovascular mortality in end-stage renal failure: a pilot study. Nephrol Dial Transplant. 2012;27(5):1873–80.

    Article  CAS  Google Scholar 

  34. Nomura S, et al. Effects of losartan and simvastatin on monocyte-derived microparticles in hypertensive patients with and without type 2 diabetes mellitus. Clin Appl Thromb Hemost. 2004;10(2):133–41.

    Article  CAS  Google Scholar 

  35. Sommeijer DW, et al. Pravastatin reduces fibrinogen receptor gpIIIa on platelet-derived microparticles in patients with type 2 diabetes. J Thromb Haemost. 2005;3(6):1168–71.

    Article  CAS  Google Scholar 

  36. Wu SY, et al. Fish-oil supplementation alters numbers of circulating endothelial progenitor cells and microparticles independently of eNOS genotype. Am J Clin Nutr. 2014;100(5):1232–43.

    Article  CAS  Google Scholar 

  37. Cheng V, et al. Restoration of glycemic control in patients with type 2 diabetes mellitus after bariatric surgery is associated with reduction in microparticles. Surg Obes Relat Dis. 2013;9(2):207–12.

    Article  Google Scholar 

  38. Rodrigues KF, et al. Circulating microparticles levels are increased in patients with diabetic kidney disease: a case-control research. Clin Chim Acta. 2018;479:48–55.

    Article  CAS  Google Scholar 

  39. Wang B, et al. Circulating microparticles in patients after ischemic stroke: a systematic review and meta-analysis. Rev Neurosci. 2018;11. https://doi.org/10.1515/revneuro‐2017‐0105.

  40. Agouni A, et al. Endothelial dysfunction caused by circulating microparticles from patients with metabolic syndrome. Am J Pathol. 2008;173(4):1210–9.

    Article  CAS  Google Scholar 

  41. Munkonda MN, et al. Podocyte-derived microparticles promote proximal tubule fibrotic signaling via p38 MAPK and CD36. J Extracell Vesicles. 2018;7(1):1432206.

    Article  Google Scholar 

  42. Vader P, et al. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 2016;106(Pt A):148–56.

    Article  CAS  Google Scholar 

  43. EL Andaloussi S, et al. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347–57.

    Article  Google Scholar 

  44. Ohno S, Drummen GP, Kuroda M. Focus on extracellular vesicles: development of extracellular vesicle-based therapeutic systems. Int J Mol Sci. 2016;17(2):172.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Rios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rios, F.J., Touyz, R.M., Montezano, A.C., Burger, D. (2019). Microparticles and Exosomes in Cell-Cell Communication. In: Touyz, R., Delles, C. (eds) Textbook of Vascular Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-16481-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16481-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16480-5

  • Online ISBN: 978-3-030-16481-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics