Skip to main content

Analysis of the Dynamic Behavior of Beams Supported by a Visco-Elastic Foundation in Context to Natural Vibrissa

  • Conference paper
  • First Online:
Interdisciplinary Applications of Kinematics

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 71))

Abstract

Rodents use their mystacial vibrissae, e.g., to recognize the shape or determine the surface texture of an object. The vibrissal sensory system consists of two components: the hair shaft and the follicle-sinus complex (FSC). Both components affect the collection of information, but the impacts of the different properties are not completely clear. Borrowing the natural example, the goal is to design a powerful artificial sensor. The influence of a continuous visco-elastic support is analyzed for an artificial sensor following hypotheses about the FSC. Starting with a theoretical treatment of this scenario, the vibrissa is modeled as an Euler-Bernoulli bending beam with a partially continuous visco-elastic support. The numerical simulations are validated by experiments. Using a steel strip as a technical vibrissa and a magneto-sensitive elastomer (MSE) as representation of the artificial continuous visco-elastic support, FSC respectively, the first resonance frequency is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arabzadeh, E., Zorzin, E., et al.: Neuronal encoding of texture in the whisker sensory pathway. PLoS Biol. 3, e17 (2005)

    Article  Google Scholar 

  2. Baldeweg, D., Will, C., et al.: Transversal vibrations of beams in context of vibrissae with foundations, discrete supports and various sections. In: Scharff, P., Weber, C., et al. (eds.) Shaping the future by engineering: 58th IWK, Ilmenau Scientific Colloquium, Technische Universität Ilmenau, Germany, 8–12 Sept (2014). (ilmendia. urn:nbn:de:gbv:ilm1-2014iwk-081:7)

    Google Scholar 

  3. Becker, T.I., Raikher, Y.L., et al.: Dynamic properties of magneto-sensitive elastomer cantilevers as adaptive sensor elements. Smart Mater. Struct. 26, 1–9 (2017)

    Article  Google Scholar 

  4. Behn, C.: Adaptive control of vibrissae-like mechanical sensors. Commun. Nonlinear Sci. Numer. Simul. 16(5), 2254–2264 (2011)

    Article  MathSciNet  Google Scholar 

  5. Behn, C., Scharff, M., et al.: Modeling of controllable support stiffness bio-inspired by tactile sensor systems. In: Stépán, G., Csernák, G. (eds.) Proceedings of the 9th European Nonlinear Dynamics Conference, Budapest, Hungary, 25–30 June. CongressLine Ltd. (2017). http://congressline.hu/enoc2017/abstracts/313.pdf

  6. Chavez Vega, J., Kaufhold, T., et al.: Field-induced plasticity of magneto-sensitive elastomers in context with soft robotic gripper applications. Proc. Appl. Math. Mech. 17, 23–26 (2017)

    Article  Google Scholar 

  7. Conn, A.T., Pearson, M.J., et al.: Dielectric elastomer vibrissal system for active tactile sensing. In: Bar-Cohen, Y. (ed.) Electroactive polymer actuators and devices (EAPAD), San Diego, United States, pp. 12–15. March. SPIE, Bellingham, United States (2012)

    Google Scholar 

  8. Dörfl, J.: The musculature of the mystacial vibrissae of the white mouse. J. Anat. 135(1), 147–154 (1982)

    Google Scholar 

  9. Han, Y., Hong, W., et al.: Field-stiffening effect of magneto-rheological elastomers. Int. J. Solids Struct. 50(14–15), 2281–2288 (2013)

    Article  Google Scholar 

  10. Helbig, T., Voges, D.: Characterizing the substrate contact of carpal vibrissae of rats during locomotion. In: Duff, A., Lepora, N.F., et al. (eds.) Biomimetic and Biohybrid Systems. Living Machines 2014. Lecture Notes in Computer Science, vol. 8608. Springer, Cham (2014)

    Google Scholar 

  11. Mitchinson, B., Gurney, K.N.M.L., et al.: Empirically inspired simulated electro-mechanical model of the rat mystacial follicle-sinus complex. Proc. R. Soc. B Biol. Sci. 271(1556), 2509–2516 (2004)

    Article  Google Scholar 

  12. Moore, C.I., Andermann, M.L.: The vibrissa resonance hypothesis. In: Ebner, F.F. (eds.) Neural Plasticity in Adult Somatic Sensory-Motor Systems. Frontiers in Neuroscience. CRS Press, Taylor & Francis (2005)

    Google Scholar 

  13. Rice, F.L., Mance, A., et al.: A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle-sinus complexes. J. Comp. Neurol. 252(2), 154–174 (1986)

    Google Scholar 

  14. Valdivia y Alvarado, P., Bhat, S.: Whisker-like sensors with tunable follicle sinus complex for underwater applications. In: Lakhtakia, A., Martn-Palma, R.J. (eds.) Bioinspiration, Biomimetics, and Bioreplication. Proceedings of SPIE, vol.9055. SPIE, Bellingham, United States (2014)

    Google Scholar 

  15. Vincent, S.B.: The tactile hair of the white rat. J. Comp. Neurol. 23(1), 1–34 (1913)

    Article  Google Scholar 

  16. Voges, D., Carl, K., et al.: Structural characterization of the whisker system of the rat. IEEE Sens. J. 12(2), 332–339 (2012)

    Article  Google Scholar 

  17. Wrobel, K.H.: Bau und Bedeutung der Blutsinus in den Vibrissen von Tupaia glis. Zentralblatt für Veterinärmedizin Reihe A 12(9), 807–899 (1965) [Transboundary and Emerging Diseases]

    Google Scholar 

  18. Zimmermann, K., Böhm, V., et al.: Investigations and simulations on the mechanical behaviour of magneto-sensitive elastomers in context with soft robotic gripper applications. Int. Sci. J. IFToMM “Problems of Mechanics” 4(65), 13–26 (2016)

    Google Scholar 

  19. Zucker, E., Welker, W.I.: Coding of somatic sensory input by vibrissae neurons in the rat’s trigeminal ganglion. Brain Res. 12(1), 138–156 (1969)

    Article  Google Scholar 

Download references

Acknowledgements

This work was technically supported by the grants ZI540-17/2 within SPP1681 by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jhohan Chavez Vega or Moritz Scharff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chavez Vega, J., Scharff, M., Helbig, T., Alencastre, J.H., Böhm, V., Behn, C. (2019). Analysis of the Dynamic Behavior of Beams Supported by a Visco-Elastic Foundation in Context to Natural Vibrissa. In: Kecskeméthy, A., Geu Flores, F., Carrera, E., Elias, D. (eds) Interdisciplinary Applications of Kinematics. Mechanisms and Machine Science, vol 71. Springer, Cham. https://doi.org/10.1007/978-3-030-16423-2_5

Download citation

Publish with us

Policies and ethics