Skip to main content

The Tearing Instability of Resistive Magnetohydrodynamics

  • Chapter
  • First Online:
Topics in Magnetohydrodynamic Topology, Reconnection and Stability Theory

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 591))

  • 666 Accesses

Abstract

In this chapter we explore the linear onset of one of the most important instabilities of resistive magnetohydrodynamics, the tearing instability. In particular, we focus on two important aspects of the onset of tearing: asymptotic (modal) stability and transient (non-modal) stability. We discuss the theory required to understand these two aspects of stability, both of which have undergone significant development in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • A. Bhattacharjee, Y.-M. Huang, H. Yang, B. Rogers, Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16, 112102 (2009)

    Article  Google Scholar 

  • J. Birn, M. Hesse, Geospace environmental modeling (GEM) magnetic reconnection challenge: resistive tearing, anisotropic pressure and Hall effects. J. Geophys. Res. 106, 3737–3750 (2001)

    Article  Google Scholar 

  • J. Birn, E.R. Priest (eds.), Reconnection of Magnetic Fields: Magnetohydrodynamics and Collisionless Theory and Observations (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  • J. Birn, J.F. Drake, M.A. Shay, B.N. Rogers, R.E. Denton, M. Hesse, M. Kuznetsova, Z.W. Ma, A. Bhattacharjee, A. Otto, P.L. Pritchett, Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 3715–3719 (2001)

    Article  Google Scholar 

  • D. Biskamp, Magnetic reconnection in current sheets. Phys. Fluids 29, 1520–1531 (1986)

    Article  Google Scholar 

  • D. Biskamp, Nonlinear Magnetohydrodynamics (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  • D. Borba, K.S. Riedel, W. Kerner, G.T.A. Huysmans, M. Ottaviani, P.J. Schmid, The pseudospectrum of the resistive magnetohydrodynamics operator: resolving the resistive Alfvén paradox. Phys. Plasmas 1, 3151–3160 (1994)

    Article  MathSciNet  Google Scholar 

  • D. Del Sarto, F. Pucci, A. Tenerani, M. Velli, “Ideal” tearing and the transition to fast reconnection in the weakly collisional MHD and EMHD regimes. J. Geophys. Res. 121, 1857–1873 (2016)

    Article  Google Scholar 

  • R.C. Di Prima, G.J. Habetler, A completeness theorem for non-self-adjoint eigenvalue problems in hydrodynamic stability. Arch. Ration. Mech. 34, 218–227 (1969)

    Article  Google Scholar 

  • D. Dobrott, S.C. Prager, J.B. Taylor, Influence of diffusion on the resistive tearing mode. Phys. Fluids 20, 1850–1854 (1977)

    Article  Google Scholar 

  • W. Eckhaus, Matched Asymptotic Expansions and Singular Perturbations (North-Holland, Amsterdam, 1973)

    MATH  Google Scholar 

  • T.G. Forbes, E.R. Priest, A numerical experiment relevant to the line-tied reconnection in two-ribbon flares. Solar Phys. 84, 169–188 (1983)

    Article  Google Scholar 

  • H.P. Furth, J. Killeen, M. Rosenbluth, Finite-resistivity instabilities of a sheet pinch. Phys. Fluids 6, 459–484 (1963)

    Article  Google Scholar 

  • J.P. Goedbloed, R. Keppens, S. Poedts, Advanced Magnetohydrodynamics (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  • A. Hanifi, P.J. Schmid, D.S. Henningson, Transient growth in compressible boundary layer flow. Phys. Fluids 826, 826–837 (1996)

    Article  MathSciNet  Google Scholar 

  • E.G. Harris, On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo Cimento 23, 115–121 (1962)

    Article  Google Scholar 

  • G. Hornig, K. Schindler, Magnetic topology and the problem of its invariant definition. Phys. Plasmas 3, 781–791 (1996)

    Article  MathSciNet  Google Scholar 

  • Y.M. Huang, L. Comisso, A. Bhattacharjee, Plasmoid instability in evolving current sheets and onset of fast reconnection. Astrophys. J. 849, 75 (2017)

    Article  Google Scholar 

  • L. Janicke, Resistive tearing mode in weakly two-dimensional neutral sheets. Phys. Fluids 23, 1843–1849 (1980)

    Article  MathSciNet  Google Scholar 

  • A.D. Jette, Force-free magnetic fields in resistive magnetohydrostatics. J. Math. Anal. Appl. 29, 109–122 (1970)

    Article  Google Scholar 

  • R.M. Kulsrud, Magnetic reconnection: Sweet–Parker versus Petschek. Earth Planets Space 53, 417–422 (2001)

    Article  Google Scholar 

  • A. Lazarian, E.T. Vishniac, Reconnection in a weakly stochastic field. Astrophys. J. 517, 700–718 (1999)

    Article  Google Scholar 

  • A. Lazarian, G. Eyink, E.T. Vishniac, G. Kowal, Turbulent reconnection and its implications. Philos. Trans. R. Soc. A 373, 2041 (2015)

    Article  Google Scholar 

  • N.F. Loureiro, A.A. Schekochihin, S.C. Cowley, Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14, 100703 (2007)

    Article  Google Scholar 

  • N.F. Loureiro, D.A. Uzdensky, A.A. Schekochihin, S.C. Cowley, T.A. Yousef, Turbulent magnetic reconnection in two dimensions. Mon. Not. R. Astron. Soc. 399, L146–L150 (2009)

    Article  Google Scholar 

  • D. MacTaggart, The non-modal onset of the tearing instability. J. Plasma Phys. 84, 905840501 (2018)

    Article  Google Scholar 

  • D. MacTaggart, P. Stewart, Optimal energy growth in current sheets. Solar Phys. 292, 148 (2017)

    Article  Google Scholar 

  • W.A. Newcomb, Motion of magnetic lines of force. Ann. Phys. 3, 347–385 (1958)

    Article  MathSciNet  Google Scholar 

  • R.B. Paris, Resistive instabilities in MHD. Ann. Phys. 9, 374–432 (1984)

    Article  Google Scholar 

  • E.N. Parker, Acceleration of cosmic rays in solar flares. Phys. Rev. 107, 830–836 (1957a)

    Article  Google Scholar 

  • E.N. Parker, Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509–520 (1957b)

    Article  Google Scholar 

  • H.E. Petschek, Magnetic field annihilation, in The Physics of Solar Flares, Proceedings of the AAS-NASA Symposium (Goddard Space Flight Center 1963) (Scientific and Technical Information Division, National Aeronautics and Space Administration, Washington, 1964), pp 425–439

    Google Scholar 

  • E.R. Priest, Magnetic theories of solar flares. Solar Phys. 86, 33–45 (1983)

    Article  Google Scholar 

  • E.R. Priest, T. Forbes, Magnetic Reconnection: MHD Theory and Applications (Cambridge University Press, Cambridge, 1993)

    MATH  Google Scholar 

  • F. Pucci, M. Velli, Reconnection of quasi-singular current sheets: the “ideal” tearing mode. Astrophys. J. Lett. 780, L14 (2014)

    Google Scholar 

  • F. Pucci, M. Velli, A. Tenerani, D. Del Sarto, Onset of fast “ideal” tearing in thin current sheets: dependence on the equilibrium current profile. Phys. Plasmas 25, 032113 (2018)

    Article  Google Scholar 

  • S.C. Reddy, D.S. Henningson, Energy growth in viscous channel flows. J. Fluid Mech. 252, 209–238 (1993)

    Article  MathSciNet  Google Scholar 

  • S.C. Reddy, P.J. Schmid, D.S. Henningson, Pseudospectra of the Orr–Sommerfeld operator. SIAM J. Appl. Math. 53, 15–47 (1993)

    Article  MathSciNet  Google Scholar 

  • R. Samtaney, N.F. Loureiro, D.A. Uzdensky, A.A. Schekochihin, S.C. Cowley, Formation of plasmoid chains in magnetic reconnection. Phys. Rev. Lett. 103, 105004 (2009)

    Article  Google Scholar 

  • K. Schindler, Physics of Space Plasma Activity (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  • P.J. Schmid, D.S. Henningson, Optimal energy density growth in Hagen–Poiseuille flow. J. Fluid Mech. 277, 197–255 (1994)

    Article  MathSciNet  Google Scholar 

  • P.J. Schmid, D.S. Henningson, Stability and Transition in Shear Flows (Springer, Berlin, 2001)

    Book  Google Scholar 

  • K. Shibata, S. Tanuma, Plasmoid-induced-reconnection and fractal reconnection. Earth Planets Space 53, 473–482 (2001)

    Article  Google Scholar 

  • R.S. Steinolfson, G. van Hoven, Nonlinear evolution of the resistive tearing mode. Phys. Fluids 27, 1207–1214 (1984)

    Article  Google Scholar 

  • P.A. Sweet, The neutral point theory of solar flares, in IAU Symposium No. 6 Electromagnetic Phenomena in Ionized Gases (Stockholm 1956) (1958), p. 123

    Google Scholar 

  • A. Tenerani, A.F. Rappazzo, M. Velli, F. Pucci, The tearing mode instability of thin current sheets: the transition to fast reconnection in the presence of viscosity. Astrophys. J. 801, 145 (2015)

    Article  Google Scholar 

  • T. Terasawa, Hall current effect on tearing mode instability. Geophys. Res. Lett. 10, 475–478 (1983)

    Article  Google Scholar 

  • L.N. Trefethen, Computation of pseudospectra. Acta Numer. 8, 247–295 (1999)

    Article  MathSciNet  Google Scholar 

  • L.N. Trefethen, M. Embree, Spectra and Pseudospectra: The Behaviour of Nonnormal Matrices and Operators (Princeton University Press, Princeton, 2005)

    MATH  Google Scholar 

  • L.N. Trefethen, A.E. Trefethen, S.C. Reddy, T.A. Driscoll, Hydrodynamic stability without eigenvalues. Science 261, 578–584 (1993)

    Article  MathSciNet  Google Scholar 

  • D.A. Uzdensky, N.F. Loureiro, Magnetic reconnection onset via disruption of a forming current sheet by the tearing instability. Phys. Rev. Lett. 116, 105003 (2016)

    Article  Google Scholar 

  • M.D. Van Dyke, Perturbation Methods in Fluid Mechanics (Parabolic Press, Stanford, 1975)

    MATH  Google Scholar 

  • T.G. Wright, EigTool (2002). http://www.comlab.ox.ac.uk/pseudospectra/eigtool

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David MacTaggart .

Editor information

Editors and Affiliations

Appendix: Completeness

Appendix: Completeness

Since the completeness of eigenfunctions is a vital property for the stability analysis we have discussed, we now say a few words about it here. In the fluid dynamics literature, one popular reference related to proving the completeness of the eigenfunctions of non-self-adjoint eigenvalue problems is Di Prima and Habetler (1969). In the theorem of Di Prima and Habetler (1969), the operators of the eigenvalue problem are written as

$$\displaystyle \begin{aligned} \sigma M\mathbf{v} = L\mathbf{v} = (L_s+B)\mathbf{v}. \end{aligned} $$
(88)

L s is a self-adjoint operator and B is a “perturbation” (that is, whatever remains). The order of the derivatives in B must be lower than those in L s since B is a perturbation. If we can express the eigenvalue problem for the onset of the TI in the form of Eq. (88), we can use the theorem of Di Prima and Habetler (1969) to prove that the eigenfunctions are complete.

As they stand, Eqs. (63) and (64) are not in a suitable form for this L s + B split. In order to achieve a suitable split, we must reconsider how we linearize the MHD equations. Until now, we have linearized the curl of the momentum equation (in order to eliminate the pressure) but have linearized the induction equation directly. If, instead, we also take the curl of the induction equation and linearize this, we find

$$\displaystyle \begin{aligned} \begin{array}{rcl}{} \frac{\partial }{\partial t}(D^2-k^2)b &\displaystyle =&\displaystyle ik[B_0(D^2-k^2)+B_0^{\prime\prime}]u - ik[U_0(D^2-k^2)+U_0^{\prime\prime}]b \\ &\displaystyle &\displaystyle +\, 2ik(B_0^{\prime}Du-U_0^{\prime}Db)+\frac{1}{S}(D^2-k^2)^2b. \end{array} \end{aligned} $$
(89)

After some algebraic manipulation, we achieve an eigenvalue problem suitable for the theorem of Di Prima and Habetler (1969):

$$\displaystyle \begin{aligned} \lambda M\mathbf{v} = L\mathbf{v} = (L_s+B)\mathbf{v}, \end{aligned} $$
(90)

where λ = −σ, v = (u, b)T,

$$\displaystyle \begin{aligned} M=\left(\begin{array}{cc} -{{D}}^2+k^2 & 0\\ 0&-D^2+k^2 \end{array}\right), \end{aligned} $$
(91)
$$\displaystyle \begin{aligned} L_s = \left(\begin{array}{cc} \frac{1}{Re}(-{{D}}^2+k^2)^2 & 0\\ 0&\frac{1}{S}(-D^2+k^2)^2 \end{array}\right), \end{aligned} $$
(92)

and

$$\displaystyle \begin{aligned} B = \left(\begin{array}{cc} {\mathcal{L}}^+_{U} & -{\mathcal{L}}^+_{B}\\ -{\mathcal{L}}^-_{B} + 2ik{B_{0z}}^{\prime}D&{\mathcal{L}}^-_{U}-2ik{U_{0z}}^{\prime}D \end{array}\right), \end{aligned} $$
(93)

where

$$\displaystyle \begin{aligned} {\mathcal{L}}^{\pm}_{U} = ik[{U_{0z}}(-D^2+k^2)\pm U_0^{\prime\prime}] \quad \mbox{and}\quad {\mathcal{L}}^{\pm}_{B} = ik[{B_{0z}}(-D^2+k^2)\pm B_0^{\prime\prime}]. \end{aligned} $$
(94)

Now the operators in B are of lower order compared to those L s and this representation is suitable for the application of the theorem of Di Prima and Habetler (1969), proving the completeness of the eigenfunctions.

Since we have increased the order of the induction equation, we need to add extra boundary conditions to complete the mathematical description of the problem. The suitable extra boundary conditions in this case are

$$\displaystyle \begin{aligned} Db=0\quad \mbox{at}\quad x=\pm d. \end{aligned} $$
(95)

These conditions derive from the solenoidal constraint (60)1 in the same way that the Du = 0 conditions derive from the incompressibility condition (60)2.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

MacTaggart, D. (2020). The Tearing Instability of Resistive Magnetohydrodynamics. In: MacTaggart, D., Hillier, A. (eds) Topics in Magnetohydrodynamic Topology, Reconnection and Stability Theory. CISM International Centre for Mechanical Sciences, vol 591. Springer, Cham. https://doi.org/10.1007/978-3-030-16343-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16343-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16342-6

  • Online ISBN: 978-3-030-16343-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics