Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

In this chapter, possible architecture enhancements will be discussed, that allow for applying passive optical networks (s) to a wider range of network scenarios than previously considered. The ongoing specification and early deployment of 5G wireless networks and services turns out to be an important driver for the evolution of future optical access technologies and network architectures. The interworking of wireless networks with PONs, which provide for fixed transport, will hence be the starting point for introducing advanced architectures, especially those that can support low-latency requirements as imposed by 5G radio technologies and services (Sect. 29.2). These services are provided over a flexible and versatile (long-reach) PON infrastructure on a metro scale, together with other service types over the same common network. Most hardware functions of such networks will be virtualized on data center platforms, supported by centralized resource orchestration across multiple network segments and technologies (Sect. 29.3). In some scenarios, direct optical links between the end nodes of a PON segment enable lowest transmission latency or offloading high traffic volumes from the main PON link. Sample use cases, as found in wireless and intradata center networks, are discussed in Sect. 29.4. Finally, in Sect. 29.5, optical solutions are introduced that can help in remotely supervising and managing the passive fiber infrastructure, as well as in reconfiguring the connectivity map of complex PON-based metro-access networks, while respecting access operational models and cost targets.

The architectures presented are based on current PON technologies and deployment practices. Most of the modifications described that are required for accommodating advanced functionalities, such as those mentioned before, are either under investigation in research or even under development already. A few are still considered only on the conceptual level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ITU-T: Recommendation G.983.x series on broadband optical access systems based on Passive Optical Networks (PON) (2001–2007)

    Google Scholar 

  • ITU-T: Recommendation G.984.x series on Gigabit-capable Passive Optical Networks (GPON) (2003–2014)

    Google Scholar 

  • IEEE: Standard for Ethernet, IEEE Std 802.3-2018 (2018)

    Google Scholar 

  • ITU-T: Recommendation G.987.x series on 10-Gigabit-capable Passive Optical Networks (XG-PON) (2012–2017)

    Google Scholar 

  • ITU-T: Recommendation G.9807 10-Gigabit-capable Symmetric Passive Optical Network (XGS-PON) (2016–2017)

    Google Scholar 

  • ITU-T: Recommendation G.989.x series on 40-Gigabit-capable passive optical networks (NG-PON2) (2013–2017)

    Google Scholar 

  • ITU-T: Recommendation G.9802.x series on Multiple-wavelength passive optical networks (MW-PONs) (2015)

    Google Scholar 

  • ITU-T: Supplement G.Sup51 Passive optical network protection considerations (06/2017)

    Google Scholar 

  • ITU-T: Supplement G.Sup49 Rogue optical network unit (ONU) considerations (02/2011)

    Google Scholar 

  • B. Le Guyader, W. Poehlmann, F. Saliou, L. Jentsch, L. Guillo, P. Chanclou, T. Pfeiffer: Electrical splitting OEO G-PON reach extender demonstration, Paper P.6.8. In: Proc. Eur. Conf. Opt. Commun. (2013)

    Google Scholar 

  • S. Koenig, R. Bonk, R. Schmogrow, A. Josten, D. Karnick, H. Schmuck, T. Pfeiffer, C. Koos, W. Freude, J. Leuthold: Cascade of 4 SOAs with 448 Gbit/s (224 Gbit/s) dual channel dual polarization 16QAM (QPSK) for high-capacity business paths in converged metro-access networks, Paper OTh4A.3. In: Proc. Opt. Fiber Conf. (2013)

    Google Scholar 

  • Nokia: 5G new radio network, White Paper (2019)

    Google Scholar 

  • T. Pfeiffer: Next generation mobile fronthaul and midhaul architectures, J. Opt. Commun. Netw. 7, B38–B45 (2015)

    Article  Google Scholar 

  • 3GPP: Technical Report TR 38.801 V14.0.0 (2017–03), Study on new radio access technology: radio access architecture and interfaces (release 14) (2017)

    Google Scholar 

  • IEEE: Standard for packet-based fronthaul transport networks, IEEE 1914.1 (will be published in 2020)

    Google Scholar 

  • ITU-T: Supplement G.Sup66, 5G wireless fronthaul requirements in a passive optical network context (07/2019)

    Google Scholar 

  • Small Cell Forum: SCF DOC 159.07.02 Small cell virtualization functional splits and use cases, release 7.0 (2016)

    Google Scholar 

  • CPRI Cooperation: CPRI specification Common Public Radio Interface (CPRI); interface specification, CPRI specification V7.0, 2015-10-09 (2015)

    Google Scholar 

  • CPRI Cooperation: CPRI specification Common Public Radio Interface: Requirements for the eCPRI Transport Network, eCPRI Transport Network V1.2, 2018-06-25  (2018)

    Google Scholar 

  • U. Doetsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, P. Sehier: Quantitative analysis of split base station processing and determination of advantageous architectures for LTE, Bell Labs Tech. J. 18, 105–128 (2013)

    Article  Google Scholar 

  • ITU-T: Recommendation G.698.4 Multichannel bi-directional DWDM applications with port agnostic single-channel optical interfaces (2018)

    Google Scholar 

  • ITU-T: Recommendation L.66, Optical fibre cable maintenance criteria for in-service fibre testing in access networks (05/2007)

    Google Scholar 

  • R. Bonk, W. Poehlmann, D. van Veen, J. Galaro, R. Farah, H. Schmuck, T. Pfeiffer: The underestimated challenges of burst-mode WDM transmission in TWDM-PON, Opt. Fiber Technol. 26, 59–70 (2015)

    Article  Google Scholar 

  • H. Debrégeas, R. Brenot, J.-G. Provost, S. Barbet, W. Pöhlmann, R. Borkowski, R. Bonk, T. Pfeiffer: Quasi frequency drift suppression for burst mode operation in low-cost thermally-tuned TWDM-PON, Paper Th5A.5. In: Opt. Fiber Commun. Conf. (2017)

    Google Scholar 

  • CPRI Cooperation: CPRI Specification Common Public Radio Interface: eCPRI Interface Specification eCPRI specification V2.0, 2019-05-10 (2019)

    Google Scholar 

  • IEEE: Standard for radio over Ethernet encapsulations and mappings, IEEE Std 1914.3-2018 (2018)

    Google Scholar 

  • O-RAN Fronthaul Working Group, O-RAN Alliance: Technical specification ORAN-WG4.CUS.0-v03.00, Control, user and synchronization plane specification (2020)

    Google Scholar 

  • S. Bidkar, J. Galaro, T. Pfeiffer: First demonstration of an ultra-low-latency fronthaul transport over a commercial TDM-PON platform, Paper Tu2K.3. In: Opt. Fiber Commun. Conf. (2018)

    Google Scholar 

  • T. Tashiro, S. Kuwano, J. Terada, T. Kawamura, N. Tanaka, S. Shigematsu, N. Yoshimoto: A novel DBA scheme for TDM-PON based mobile fronthaul, Paper Tu3F.3. In: Opt. Fiber Commun. Conf. (2014)

    Google Scholar 

  • R. Bonk, R. Borkowski, M. Straub, H. Schmuck, T. Pfeiffer: Demonstration of ONU activation for in-service TDM-PON allowing uninterrupted low-latency transport links, Paper W3J.4. In: Opt. Commun. Conf. (2019)

    Google Scholar 

  • Open Networking Lab, AT&T: White paper central office re-architectured as data center, June (2015)

    Google Scholar 

  • NTT: White paper flexible access system architecture (FASA), v2.0, March (2017)

    Google Scholar 

  • ONAP: White paper, Open network automation platform (ONAP) architecture, www.onap.org (2018)

  • M.K. Weldon: The Future X Network: A Bell Labs Perspective (CRC, Boca Raton 2015)

    Book  Google Scholar 

  • F. Effenberger: PON resilience, J. Opt. Commun. Netw. 7(3), A547–A552 (2015)

    Article  Google Scholar 

  • T. Pfeiffer: Converged heterogeneous optical metro-access networks, Paper Tu.5.B.1. In: Eur. Conf. Opt. Commun. (2010)

    Google Scholar 

  • M. Al-Fares, A. Loukissas, A. Vahdat: A scalable, commodity data center network architecture, ACM SIGCOMM Comput. Commun. Rev. 38(4), 63–74 (2008)

    Article  Google Scholar 

  • T. Benson, A. Akella, D.A. Maltz: Network traffic characteristics of data centers in the wild. In: Proc. Internet Meas. Conf. (IMC) (2010) pp. 267–280

    Google Scholar 

  • J. Li, J. Chen: Passive optical network based mobile backhaul enabling ultra-low latency for communications among base stations, J. Opt. Commun. Netw. 9, 855–863 (2017)

    Article  Google Scholar 

  • C. Choi, Q. Wei, T. Biermann, L. Scalia: Mobile WDM backhaul access networks with physical inter-base-station links for coordinated multipoint transmission/reception systems. In: IEEE Global Telecommun. Conf. GLOBECOM (2011), https://doi.org/10.1109/GLOCOM.2011.6133510

    Chapter  Google Scholar 

  • A.A.M. Saleh, H. Kogelnik: Reflective single-mode fiber-optic passive star couplers, J. Lightwave Technol. 6, 392–398 (1988)

    Article  Google Scholar 

  • Y. Cheng, M. Fiorani, R. Lin, L. Wosinska, J. Chen: POTORI: a passive optical top-of-rack interconnect architecture for data centers, J. Opt. Commun. Netw. 9, 401–411 (2017)

    Article  Google Scholar 

  • T. Pfeiffer: Distributing system for the communication between distributed base stations, and distributing unit therefor, Patent pending, EP2348787A1 (2010)

    Google Scholar 

  • T. Pfeiffer: A physical layer perspective on access network sharing, Opt. Fiber Technol. 26, 12–20 (2015)

    Article  Google Scholar 

  • Y. Enomoto, H. Izumita, M. Nakamura: Over 31.5 dB dynamic range optical fiber line testing system with optical fiber fault isolation function for 32-branched PON, Paper ThAA3. In: Opt. Fiber Commun. Conf. (2013)

    Google Scholar 

  • T. Pfeiffer, H. Schmuck, M. Straub, J. Hehmann: Cost efficient non-service interrupting monitoring of optical fiber links in FTTH / FTTB networks, Paper Tu.1.F.2. In: Eur. Conf. Opt. Commun. (2008)

    Google Scholar 

  • A. Ehrhardt, L. Schuerer, F. Escher, B. Nagel, H.-M. Foisel: ONT reflection for additional maintenance by OTDR measurements in FTTH networks, Paper JW2A.08. In: Opt. Fiber Commun. Conf. (2013)

    Google Scholar 

  • C.-K. Chan, F. Tong, L.-K. Chew, K.-P. Ho, D. Lam: Fault surveillance of branched optical networks using an amplifier-generated wavelength-sweeping monitoring source, Paper ThE2. In: Opt. Fiber Commun. Conf. (1999)

    Google Scholar 

  • Y. Li, D. Wang, J. Li: FTTH remote fiber monitoring using optical wavelength domain reflectometry (OWDR) and wavelength coded tag (WCT), Paper OThU3. In: Opt. Fiber Commun. Conf. (2006)

    Google Scholar 

  • J. Hehmann, T. Pfeiffer: New monitoring concepts for optical access networks, Bell Labs Tech. J. 13, 183–198 (2008)

    Article  Google Scholar 

  • J. Hehmann, M. Straub, L. Jentsch, M. Earnshaw, P. Anthapadmanabhan, T. Pfeiffer: Remotely powered intelligent splitter monitor for fiber access networks, Paper Tu.1.5.4. In: Eur. Conf. Opt. Commun. (2015)

    Google Scholar 

  • M. Straub, L. Jentsch, J. Hehmann, T. Pfeiffer, R. Bonk: Remotely powered Inline OTDR unit with unique identification possibility of power splitter branches for use in access network applications, Paper we2.68. In: Eur. Conf. Opt. Commun. (2018)

    Google Scholar 

  • Sercalo: MEMS optical switch SXLA2x2SMF, http://www.sercalo.com

  • B. Schrenk, M. Hofer, M. Hentschel, T. Zemen: Semi-passive power/wavelength splitting node with integrated spectrum monitoring for reconfigurable PON, Paper Th2A.30. In: Opt. Fiber Commun. Conf. (2017)

    Google Scholar 

  • K. Wang, A. Gowda, Y. Bi, L.G. Kazovsky: Multi-dimensional quasi-passive reconfigurable (MDQPAR) node for future 5G optical networks, Paper Tu2K.2. In: Opt. Fiber Commun. Conf. (2017)

    Google Scholar 

  • K. Wang, Y. Bi, A. Gowda, L.G. Kazovsky: Bidirectional quasi-passive reconfigurable (Bi-QPAR) remote node for future optical access networks, J. Lightwave Technol. 35, 2109–2117 (2017)

    Article  Google Scholar 

  • G. Labroille, B. Denolle, P. Jian, P. Genevaux, N. Treps, J.-F. Morizur: Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion, Opt. Express 22(13), 15599–15607 (2014)

    Article  Google Scholar 

  • Cailabs: Variable-ratio optical splitter for controlling the proportion of energy of a light beam, Patent pending, WO2018/134534 A1 (2018)

    Google Scholar 

  • M. Roeger, B. Hiba, J. Hehmann, M. Straub, H. Schmuck, M. Hedrich, T. Pfeiffer, C. Koos, J. Leuthold, W. Freude: In-service monitoring of PON access networks with powerline independent devices, J. Opt. Commun. Netw. 6, 1018–1027 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Pfeiffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Pfeiffer, T. (2020). PON Architecture Enhancements. In: Mukherjee, B., Tomkos, I., Tornatore, M., Winzer, P., Zhao, Y. (eds) Springer Handbook of Optical Networks. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-16250-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16250-4_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16249-8

  • Online ISBN: 978-3-030-16250-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics