Skip to main content

Zusammenfassung

The chapter is organized as follows. Sections 16.1 to 16.3 constitute the first part of the chapter, namely, physical network layer design. In Sect. 16.1, the physical impairments that affect long-haul optical fiber networks are described. Models for predicting and measuring the quality of transmission () of network connections are detailed. In Sect. 16.2 various routing and wavelength assignment () algorithms are presented, some of which only guarantee QoT requirements in the presence of PLIs, while others optimize network performance while taking into account the PLIs. The latter, called PLI-aware algorithms, can significantly improve the performance of the network, i. e., lower the blocking probability. Sample numerical results illustrating the efficacy of cross-layer methods are presented. Section 16.3 addresses the design of protection and restoration techniques for physically impaired optical networks. The survivability of these networks to link failures is greatly enhanced by including information about the PLIs directly within the protection or restoration algorithms. The second part of the chapter, focusing on application-network-layer design, consists of Sects. 16.4 to 16.6. An application-aware metro-access programmable architecture is presented in Sect. 16.4. Resource allocation and path protection based on software-defined networking () is presented in Sect. 16.5, and Sect. 16.6 presents application-aware converged wireless-access resource scheduling. The chapter is concluded in Sect. 16.7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • G.P. Agrawal: Fiber Optic Communication Systems (Wiley, New York 1992)

    Google Scholar 

  • R. Ramaswami, K.N. Sivarajan: Optical Networks: A Practical Perspective (Morgan Kaufmann, New York 1998)

    Google Scholar 

  • G.P. Agrawal: Nonlinear Fiber Optics (Academic Press, San Diego 2013)

    MATH  Google Scholar 

  • T. Deng, S. Subramaniam, J. Xu: Crosstalk-aware wavelength assignment in dynamic wavelength-routed optical networks. In: First Int. Conf. Broadband Netw., San Jose (2004), https://doi.org/10.1109/BROADNETS.2004.26

    Chapter  Google Scholar 

  • M. Batayneh, D.A. Schupke, M. Hoffmann, A. Kirstaedter, B. Mukherjee: Optical network design for a multiline-rate carrier-grade Ethernet under transmission-range constraints, J. Lightwave Technol. 26(1), 121–130 (2008)

    Article  Google Scholar 

  • Y. Pointurier, M. Brandt-Pearce, S. Subramaniam, B. Xu: Cross-layer adaptive routing and wavelength assignment in all-optical networks, IEEE J. Sel. Areas Commun. 26(6), 32–44 (2008)

    Article  Google Scholar 

  • B. Xu, M. Brandt-Pearce: Comparison of FWM- and XPM-induced crosstalk using the Volterra series transfer function method, J. Lightwave Technol. 21(1), 40–53 (2003)

    Article  Google Scholar 

  • Y. Pointurier, M. Brandt-Pearce: Analytical study of crosstalk propagation by fiber nonlinearity in all-optical networks using perturbation theory, J. Lightwave Technol. 23(12), 4074–4083 (2005)

    Article  Google Scholar 

  • Y. Dong, S.-H. Zhao, Y.-H. Ni, H. Hong, X.-F. Tian: Effect of nonlinear phase noise on DQPSK modulation system. In: Int. Conf. Electron. Commun. Control, Ningbo (2011), https://doi.org/10.1109/ICECC.2011.6066318

    Chapter  Google Scholar 

  • A. Mafi, S. Raghavan: Nonlinear phase noise in optical communication systems using eigenfunction expansion method, Opt. Eng. 50, 055003 (2011)

    Article  Google Scholar 

  • X. Zhu, S. Kumar: Nonlinear phase noise in coherent optical OFDM transmission systems, Opt. Express 18(7), 7347–7360 (2010)

    Article  Google Scholar 

  • M. Malekiha, S. Kumar: Second-order theory for nonlinear phase noise in coherent fiber-optic system based on phase shift keying. In: 24th Can. Conf. Electr. Comput. Eng., Niagara Falls (2011), https://doi.org/10.1109/CCECE.2011.6030494

    Chapter  Google Scholar 

  • M. Magarini, A. Spalvieri, F. Vacondio, M. Bertolini, M. Pepe, G. Gavioli: Empirical modeling and simulation of phase noise in long-haul coherent optical transmission systems, Opt. Express 19(23), 22455–22461 (2011)

    Article  Google Scholar 

  • N. Sambo, M. Secondini, F. Cugini, G. Bottari, P. Iovanna, F. Cavaliere, P. Castoldi: Modeling and distributed provisioning in 10–40-100-Gb/s multirate wavelength switched optical networks, J. Lightwave Technol. 29(9), 1248–1257 (2011)

    Article  Google Scholar 

  • B. Ramamurthy, D. Datta, H. Feng, J.P. Heritage, B. Mukherjee: Impact of transmission impairments on the teletraffic performance of wavelength-routed optical networks, J. Lightwave Technol. 17(10), 1713–1723 (1999)

    Article  Google Scholar 

  • A. Mokhtar, M. Azizoglu: Adaptive wavelength routing in all-optical networks, IEEE ACM Trans. Netw. 6(2), 197–206 (1998)

    Article  Google Scholar 

  • E. Karasan, E. Ayanoglu: Effects of wavelength routing and selection algorithms on wavelength conversion gain in WDM optical networks, IEEE ACM Trans. Netw. 6(2), 186–196 (1998)

    Article  Google Scholar 

  • A. Birman, A. Kershenbaum: Routing and wavelength assignment methods in single-hop all-optical networks with blocking. In: Proc. IEEE Conf. Comput. Commun., Boston (1995), https://doi.org/10.1109/INFCOM.1995.515906

    Chapter  Google Scholar 

  • R. Jain, D. Chiu, W. Hawe: A quantitative measure of fairness and discrimination for resource allocation in shared computer systems, DEC Research Report TR-301 (1984)

    Google Scholar 

  • J. Sole-Pareta, S. Subramaniam, D. Careglio, S. Spadaro: Cross-layer approaches for planning and operating impairment-aware optical networks, Proc. IEEE 100(5), 1118–1129 (2012)

    Article  Google Scholar 

  • A.G. Rahbar: Review of dynamic impairment-aware routing and wavelength assignment techniques in all-optical wavelength-routed networks, IEEE Commun. Surv. Tutor. 14(4), 1065–1089 (2012)

    Article  Google Scholar 

  • A. Askarian, Y. Zhai, S. Subramaniam, Y. Pointurier, M. Brandt-Pearce: Protection and restoration from link failure in DWDM networks: A cross-layer study. In: IEEE Int. Conf. Commun., Beijing (2008), https://doi.org/10.1109/ICC.2008.1021

    Chapter  Google Scholar 

  • D. Zhou, S. Subramaniam: Survivability in optical networks, IEEE Network 14(6), 16–23 (2000)

    Article  Google Scholar 

  • A. Askarian, Y. Zhai, S. Subramaniam, Y. Pointurier, M. Brandt-Pearce: Cross-layer approach to survivable DWDM network design, J. Opt. Commun. Netw. 2(6), 319–331 (2010)

    Article  Google Scholar 

  • M. Medard, R.A. Barry, S.G. Finn, W. He, S. Lumetta: Generalized loop-back recovery in optical mesh networks, IEEE ACM Trans. Netw. 10(1), 153–164 (2002)

    Article  Google Scholar 

  • B. Mukherjee, S. Ferdousi: The network user and its growing influence, Comput. Commun. 131(3), 43–45 (2018)

    Article  Google Scholar 

  • B. Mukherjee, M.F. Habib, F. Dikbiyik: Network adaptability from disaster disruptions and cascading failures, IEEE Commun. Mag. 52(5), 230–238 (2014)

    Article  Google Scholar 

  • F. T. Leighton: Connect to tomorrow, Akamai Edge Conference keynote speech (2017)

    Google Scholar 

  • K.J. Kerpez, J.M. Cioffi, G. Ginis, M. Goldburg, S. Galli, P. Silverman: Software-defined access networks, IEEE Commun. Mag. 52(9), 152–159 (2014)

    Article  Google Scholar 

  • T. Zinner, M. Jarschel, A. Blenk, F. Wamser, W. Kellerer: Dynamic application-aware resource management using software-defined networking: Implementation prospects and challenges. In: IEEE Netw. Oper. Manag. Symp., Krakow (2014), https://doi.org/10.1109/NOMS.2014.6838404

    Chapter  Google Scholar 

  • K. Kondepu, A. Sgambelluri, L. Valcarenghi, F. Cugini, P. Castoldi: Exploiting SDN for integrating green TWDM-PONS and metro networks preserving end-to-end delay, J. Opt. Commun. Netw. 9(1), 67–74 (2017)

    Article  Google Scholar 

  • I.F. Akyildiz, A. Lee, P. Wang, M. Luo, W. Chou: A roadmap for traffic engineering in SDN-openflow networks, Comput. Netw. 71, 1–30 (2014)

    Article  Google Scholar 

  • A. Lara, A. Kolasani, B. Ramamurthy: Network innovation using openflow: A survey, IEEE Commun. Surv. Tutor. 16, 493–512 (2014)

    Article  Google Scholar 

  • D. Chitimalla, M. Tornatore, S. Lee, H. Lee, S. Park, H.S. Chung, B. Mukherjee: QoE enhancement schemes for video in converged OFDMA wireless networks and EPONs, J. Opt. Commun. Netw. 10(3), 229–239 (2018)

    Article  Google Scholar 

  • N. Chander: Transforming Mobile Backhaul Networks: Using SDN to Securely Scale Backhaul for LTE and the Next Generation of Mobile Broadband Services (IDC, Framingham 2014)

    Google Scholar 

  • C.J. Bernardos, A. De La Oliva, P. Serrano, A. Banchs, L.M. Contreras, H. Jin, J.C. Zuniga: An architecture for software defined wireless networking, IEEE Wirel. Commun. 21(3), 52–61 (2014)

    Article  Google Scholar 

  • D. Bojic, E. Sasaki, N. Cvijetic, T. Wang, J. Kuno, J. Lessmann, S. Schmid, H. Ishii, S. Nakamura: Advanced wireless and optical technologies for small-cell mobile backhaul with dynamic software-defined management, IEEE Commun. Mag. 51(9), 86–93 (2013)

    Article  Google Scholar 

  • J. Costa-Requena, J.L. Santos, V.F. Guasch: Mobile backhaul transport streamlined through SDN. In: 17th Int. Conf. Transpar. Opt. Netw., Budapest (2015), https://doi.org/10.1109/ICTON.2015.7193588

    Chapter  Google Scholar 

  • R. Vilalta, R. Muñoz, R. Casellas, R. Martínez, F. Francois, S. Peng, R. Nejabati, D.E. Simeonidou, N. Yoshikane, T. Tsuritani, I. Morita, V. López, T. Szyrkowiec, A. Autenrieth: Network virtualization controller for abstraction and control of openflow-enabled multi-tenant multi-technology transport networks. In: Opt. Fiber Commun. Conf., Los Angeles (2015), https://doi.org/10.1364/OFC.2015.Th3J.6

    Chapter  Google Scholar 

  • W. Xia, Y. Wen, C.H. Foh, D. Niyato, H. Xie: A survey on software-defined networking, IEEE Commun. Surv. Tutor. 17(1), 27–51 (2015)

    Article  Google Scholar 

  • P. Parol, M. Pawlowski: Towards networks of the future: SDN paradigm introduction to PON networking for business applications. In: Fed. Conf. Comput. Sci. Inf. Syst., Krakow (2013) pp. 829–836

    Google Scholar 

  • ITU-T Recommendation Y.1541: Network performance objectives for IP-based services (2011)

    Google Scholar 

  • L. Valcarenghi: Where do we stand and where are we heading in making NG-PONs more energy efficient? In: Int. Conf. Opt. Netw. Des. Model., Pisa (2015), https://doi.org/10.1109/ONDM.2015.7127300

    Chapter  Google Scholar 

  • S. Kaur, J. Singh, N.S. Ghumman: Network programmability using POX controller. In: Int. Conf. Commun. Comput. Syst. (2014) pp. 134–138

    Google Scholar 

  • 3GPP TR 38.801 V2.0.0: Study on new radio access technology: Radio access architecture and interfaces (2017)

    Google Scholar 

  • C. Colman-Meixner, G.B. Figueiredo, M. Fiorani, M. Tornatore, B. Mukherjee: Resilient cloud network mapping with virtualized BBU placement for cloud-RAN. In: IEEE Int. Conf. Adv. Netw. Telecommun. Syst., Bangalore (2016), https://doi.org/10.1109/ANTS.2016.7947790

    Chapter  Google Scholar 

  • L. Valcarenghi, F. Cugini, F. Paolucci, P. Castoldi: Quality-of-service-aware fault tolerance for grid-enabled applications, Opt. Switch. Netw. 5(2–3), 150–158 (2008)

    Article  Google Scholar 

  • M.R. Rahman, R. Boutaba: SVNE: Survivable virtual network embedding algorithms for network virtualization, IEEE Trans. Netw. Serv. Manag. 10(2), 105–118 (2013)

    Article  Google Scholar 

  • F. Gu, H. Alazemi, A. Rayes, N. Ghani: Survivable cloud networking services. In: Int. Conf. Comput. Netw. Commun., San Diego (2013), https://doi.org/10.1109/ICCNC.2013.6504230

    Chapter  Google Scholar 

  • S. Ramanathan, M. Tacca, M. Razo, B. Mirkhanzadeh, K. Kondepu, F. Giannone, L. Valcarenghi, A. Fumagalli: A programmable optical network testbed in support of C-RAN: A reliability study, Photonic Netw. Commun. (2019), https://doi.org/10.1007/s11107-018-00825-9

    Article  Google Scholar 

  • A. Fumagalli, L. Valcarenghi: IP restoration vs. WDM protection: Is there an optimal choice?, IEEE Network 14(6), 34–41 (2000)

    Article  Google Scholar 

  • K. Kondepu, A. Sgambelluri, N. Sambo, F. Giannone, P. Castoldi, L. Valcarenghi: Orchestrating lightpath recovery and flexible functional split to preserve virtualized RAN connectivity, J. Opt. Commun. Netw. 10(11), 843–851 (2018)

    Article  Google Scholar 

  • Linux Foundation: Open vswitch documentation, http://openvswitch.org/support/ (2016)

  • Open Network Foundation: OpenFlow switch specification, www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.3.1.pdf (2013)

  • H. Welte, P.N. Ayuso: Netfilter.org project, www.netfilter.org (2014)

  • D. Hicks, C. Malina-Maxwell, M. Razo, M. Tacca, A. Fumagalli, D. Nguyen: PROnet: A programmable optical network prototype. In: 18th Int. Conf. Transpar. Opt. Netw., Trento (2016), https://doi.org/10.1109/ICTON.2016.7550421

    Chapter  Google Scholar 

  • OpenAirInterface Wiki: https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/home

  • B. Mirkhanzadeh, A. Shakeri, C. Shao, M. Razo, M. Tacca, G.M. Galimberti, G. Martinelli, M. Cardani, A. Fumagalli: An SDN-enabled multi-layer protection and restoration mechanism, Opt. Switch. Netw. 30, 23–32 (2018)

    Article  Google Scholar 

  • T. Chen, M. Matinmikko, X. Chen, X. Zhou, P. Ahokangas: Software defined mobile networks: Concept, survey, and research directions, IEEE Commun. Mag. 53(11), 126–133 (2015)

    Article  Google Scholar 

  • J. Elbers, K. Grobe, A. Magee: Software-defined access networks. In: Eur. Conf. Opt. Commun., Cannes (2014), https://doi.org/10.1109/ECOC.2014.6964232

    Chapter  Google Scholar 

  • NGMN Alliance: RAN evolution project CoMP evaluation and enhancement (NGMN, Frankfurt 2015)

    Google Scholar 

  • A. Marotta, K. Kondepu, F. Giannone, S. Doddikrinda, D. Cassioli, C. Antonelli, L. Valcarenghi, P. Castoldi: Performance evaluation of CoMP coordinated scheduling over different backhaul infrastructures: A real use case scenario. In: Int. Conf. Sci. Electr. Eng., Eilat (2016), https://doi.org/10.1109/ICSEE.2016.7806105

    Chapter  Google Scholar 

  • S. Kuwano, J. Terada, N. Yoshimoto: Operator perspective on next-generation optical access for future radio access. In: IEEE Int. Conf. Commun. Worksh., Sydney (2014), https://doi.org/10.1109/ICCW.2014.6881226

    Chapter  Google Scholar 

  • T. Tashiro, S. Kuwano, J. Terada, T. Kawamura, N. Tanaka, S. Shigematsu, N. Yoshimoto: A novel DBA scheme for TDM-PON based mobile fronthaul. In: Opt. Fiber Commun. Conf. (2014), https://doi.org/10.1364/OFC.2014.Tu3F.3

    Chapter  Google Scholar 

  • D. Iida, S. Kuwano, J. Kani, J. Terada: Dynamic TWDM-PON for mobile radio access networks, Opt. Express 21(22), 26209–26218 (2013)

    Article  Google Scholar 

  • 3GPP TR 36.819 V 11.2.0: Coordinated multi-point operation for LTE physical layer aspects (2013)

    Google Scholar 

  • G.Y. Li, J. Niu, D. Lee, J. Fan, Y. Fu: Multi-cell coordinated scheduling and MIMO in LTE, IEEE Commun. Surv. Tutor. 16(2), 761–775 (2014)

    Article  Google Scholar 

  • F. Musumeci, E. De Silva, M. Tornatore: Enhancing RAN throughput by optimized coMP controller placement in optical metro networks, IEEE J. Sel. Areas Commun. 36(11), 2561–2569 (2018)

    Article  Google Scholar 

  • A. Marotta, K. Kondepu, F. Giannone, D. Cassioli, C. Antonelli, L. Valcarenghi, P. Castoldi: Impact of CoMP VNF placement on 5G coordinated scheduling performance. In: Eur. Conf. Netw. Commun. (2017), https://doi.org/10.1109/EuCNC.2017.7980776

    Chapter  Google Scholar 

  • 3GPP TS 36.423 V 14.2.0: Technical specification group radio access network: Evolved universal terrestrial radio access network (E-UTRAN); X2 application protocol (X2AP)(release 14) (2017)

    Google Scholar 

  • A. Marotta, F. Giannone, K. Kondepu, D. Cassioli, C. Antonelli, L. Valcarenghi, P. Castoldi: Reducing CoMP control message delay in PON backhauled 5G networks. In: 23th Eur. Wirel. Conf. (2017) pp. 1–5

    Google Scholar 

  • 3GPP TS 36.213: Evolved universal terrestrial radio access (E-UTRA): Physical layer procedures (release 13) (2016)

    Google Scholar 

  • L. Valcarenghi, M. Chincoli, P. Monti, L. Wosinska, P. Castoldi: Energy efficient PONs with service delay guarantees. In: Sust. Internet ICT Sustain., Pisa (2012)

    Google Scholar 

  • G. Piro, N. Baldo, M. Miozzo: An LTE module for the NS-3 network simulator. In: 4th Int. ICST Conf. Simul. Tools Tech., Brussels (2011) pp. 415–422

    Google Scholar 

  • X. Wu, K. Brown, C. Sreenan, P. Alvarez, M. Ruffini, N. Marchetti, D.B. Payne, L. Doyle: An XG-PON module for the NS-3 network simulator. In: Worksh. NS-3 (2013), https://doi.org/10.4108/simutools.2013.251605

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Subramaniam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Subramaniam, S., Kondepu, K., Marotta, A. (2020). Cross-Layer Design. In: Mukherjee, B., Tomkos, I., Tornatore, M., Winzer, P., Zhao, Y. (eds) Springer Handbook of Optical Networks. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-16250-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16250-4_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16249-8

  • Online ISBN: 978-3-030-16250-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics