Skip to main content

Mild Blast-Induced Traumatic Brain Injury Model

  • Chapter
  • First Online:
Animal Models of Acute Neurological Injury

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

  • 684 Accesses

Abstract

Blast injuries from explosive events can be simulated in a laboratory setting through a variety of means. Different elements of blast-induced traumatic brain injuries can be recapitulated in the laboratory setting in tandem or in isolation to investigate a variety of research questions. The research question of interest will dictate choices regarding the modality of blast generation, animal positioning, head fixation, and body protection. Due to the relatively young nature of the field and the various blast injury models, consensus opinions have not been reached with regard to model designs, exposure conditions, and outcome evaluations. This chapter outlines one procedure for administering a diffuse, closed-head mild blast-induced TBI (mild bTBI) to rats via open-ended shock tube and includes discussion on the impact of differing choices with regard to model design, exposure conditions, and outcome evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bass CR, Panzer MB, Rafaels KA, Wood G, Shridharani J, Capehart B. Brain injuries from blast. Ann Biomed Eng. 2012;40(1):185–202. https://doi.org/10.1007/s10439-011-0424-0.

    Article  PubMed  Google Scholar 

  2. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Division of Injury Response. Blast injuries: fact sheets for professionals; 2013.

    Google Scholar 

  3. Bass CR, Rafaels KA, Salzar RS. Pulmonary injury risk assessment for short-duration blasts. J Trauma Acute Care Surg. 2008;65(3):604–15.

    Article  Google Scholar 

  4. Gefen A, Gefen N, Zhu Q, Raghupathi R, Margulies SS. Age-dependent changes in material properties of the brain and braincase of the rat. J Neurotrauma. 2003;20(11):1163–77.

    Article  Google Scholar 

  5. Envigo.com. (2019). Sprague Dawley® outbred rat | Envigo. [online] Available at: https://www.envigo.com/products-services/research-models-services/models/research-models/rats/outbred/sprague-dawley-outbred-rat/. https://www.envigo.com/resources/growth-curves/sprague-dawley-gc-sept2015.pdf

  6. Bolander R, Mathie B, Bir C, Ritzel D, VandeVord P. Skull flexure as a contributing factor in the mechanism of injury in the rat when exposed to a shock wave. Ann Biomed Eng. 2011;39(10):2550–9. https://doi.org/10.1007/s10439-011-0343-0.

    Article  PubMed  Google Scholar 

  7. Chandra N, Ganpule S, Kleinschmit NN, Feng R, Holmberg AD, Sundaramurthy A, Selvan V, Alai A. Evolution of blast wave profiles in simulated air blasts: experiment and computational modeling. Shock Waves. 2012;22(5):403–15. https://doi.org/10.1007/s00193-012-0399-2.

    Article  Google Scholar 

  8. Newman AJ, Mollendorf JC. The peak overpressure field resulting from shocks emerging from circular shock tubes. J Fluids Eng. 2010;132(8):081204. https://doi.org/10.1115/1.4002183.

    Article  Google Scholar 

  9. Budde MD, Shah A, McCrea M, Cullinan WE, Pintar FA, Stemper BD. Primary blast traumatic brain injury in the rat: relating diffusion tensor imaging and behavior. Front Neurol. 2013;4:154.

    Article  Google Scholar 

  10. Walls MK, Race N, Zheng L, Vega-Alvarez SM, Acosta G, Park J, Shi R. Structural and biochemical abnormalities in the absence of acute deficits in mild primary blast-induced head trauma. J Neurosurg. 2016;124(3):675–86. https://doi.org/10.3171/2015.1.JNS141571.

    Article  CAS  PubMed  Google Scholar 

  11. Goldstein LE, Fisher AM, Tagge CA, Zhang XL, Velisek L, Sullivan JA, Upreti C, Kracht JM, Ericsson M, Wojnarowicz MW, Goletiani CJ, Maglakelidze GM, Casey N, Moncaster JA, Minaeva O, Moir RD, Nowinski CJ, Stern RA, Cantu RC, Geiling J, Blusztajn JK, Wolozin BL, Ikezu T, Stein TD, Budson AE, Kowall NW, Chargin D, Sharon A, Saman S, Hall GF, Moss WC, Cleveland RO, Tanzi RE, Stanton PK, McKee AC. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med. 2012;4(134):134ra60. https://doi.org/10.1126/scitranslmed.3003716. PubMed PMID: 22593173; PMCID: 3739428.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Svetlov SI, Prima V, Glushakova O, Svetlov A, Kirk DR, Gutierrez H, Serebruany VL, Curley KC, Wang KK, Hayes RL. Neuro-glial and systemic mechanisms of pathological responses in rat models of primary blast overpressure compared to “composite” blast. Front Neurol. 2012;3:15. https://doi.org/10.3389/fneur.2012.00015. PubMed PMID: 22403567; PMCID: 3275793.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fujimoto ST, Longhi L, Saatman KE, Conte V, Stocchetti N, McIntosh TK. Motor and cognitive function evaluation following experimental traumatic brain injury. Neurosci Biobehav Rev. 2004;28(4):365–78. https://doi.org/10.1016/j.neubiorev.2004.06.002.

    Article  PubMed  Google Scholar 

  14. Hamm RJ. Neurobehavioral assessment of outcome following traumatic brain injury in rats: an evaluation of selected measures. J Neurotrauma. 2001;18(11):1207–16.

    Article  CAS  Google Scholar 

  15. Elder GA, Dorr NP, De Gasperi R, Gama Sosa MA, Shaughness MC, Maudlin-Jeronimo E, Hall AA, McCarron RM, Ahlers ST. Blast exposure induces post-traumatic stress disorder-related traits in a rat model of mild traumatic brain injury. J Neurotrauma. 2012;29(16):2564–75.

    Article  Google Scholar 

  16. Fernando A, Robbins T. Animal models of neuropsychiatric disorders. Annu Rev Clin Psychol. 2011;7:39–61.

    Article  CAS  Google Scholar 

  17. Lapiz-Bluhm MDS, Bondi CO, Doyen J, Rodriguez G, Bédard-Arana T, Morilak DA. Behavioural assays to model cognitive and affective dimensions of depression and anxiety in rats. J Neuroendocrinol. 2008;20(10):1115–37.

    Article  CAS  Google Scholar 

  18. Yeoh S, Bell ED, Monson KL. Distribution of blood-brain barrier disruption in primary blast injury. Ann Biomed Eng. 2013;41(10):2206–14. https://doi.org/10.1007/s10439-013-0805-7.

    Article  PubMed  Google Scholar 

  19. Cho HJ, Sajja VS, Vandevord PJ, Lee YW. Blast induces oxidative stress, inflammation, neuronal loss and subsequent short-term memory impairment in rats. Neuroscience. 2013;253:9–20. https://doi.org/10.1016/j.neuroscience.2013.08.037.

    Article  CAS  PubMed  Google Scholar 

  20. Garman RH, Jenkins LW, Switzer RC III, Bauman RA, Tong LC, Swauger PV, Parks SA, Ritzel DV, Dixon CE, Clark RS. Blast exposure in rats with body shielding is characterized primarily by diffuse axonal injury. J Neurotrauma. 2011;28(6):947–59.

    Article  Google Scholar 

  21. Readnower RD, Chavko M, Adeeb S, Conroy MD, Pauly JR, McCarron RM, Sullivan PG. Increase in blood-brain barrier permeability, oxidative stress, and activated microglia in a rat model of blast-induced traumatic brain injury. J Neurosci Res. 2010;88(16):3530–9. https://doi.org/10.1002/jnr.22510. PubMed PMID: 20882564; PMCID: 2965798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Säljö A, Bao F, Jingshan S, Hamberger A, Hansson H-A, Haglid KG. Exposure to short-lasting impulse noise causes neuronal c-Jun expression and induction of apoptosis in the adult rat brain. J Neurotrauma. 2002;19(8):985–91.

    Article  Google Scholar 

  23. Säljö A, Bao F, Shi J, Hamberger A, Hansson H-A, Haglid KG. Expression of c-Fos and c-Myc and deposition of β-APP in neurons in the adult rat brain as a result of exposure to short-lasting impulse noise. J Neurotrauma. 2002;19(3):379–85.

    Article  Google Scholar 

  24. Säljö A, Bao F, Haglid KG, Hansson H-A. Blast exposure causes redistribution of phosphorylated neurofilament subunits in neurons of the adult rat brain. J Neurotrauma. 2000;17(8):719–26.

    Article  Google Scholar 

  25. Säljö A, Huang Y-L, Hansson H-A. Impulse noise transiently increased the permeability of nerve and glial cell membranes, an effect accentuated by a recent brain injury. J Neurotrauma. 2003;20(8):787–94.

    Article  Google Scholar 

  26. Agoston DV, Elsayed M. Serum-based protein biomarkers in blast-induced traumatic brain injury spectrum disorder. Front Neurol. 2012;3:107.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tate CM, Wang KK, Eonta S, Zhang Y, Carr W, Tortella FC, Hayes RL, Kamimori GH. Serum brain biomarker level, neurocognitive performance, and self-reported symptom changes in soldiers repeatedly exposed to low-level blast: a breacher pilot study. J Neurotrauma. 2013;30(19):1620–30. https://doi.org/10.1089/neu.2012.2683.

    Article  PubMed  Google Scholar 

  28. Graner J, Oakes TR, French LM, Riedy G. Functional MRI in the investigation of blast-related traumatic brain injury. Front Neurol. 2013;4:16. https://doi.org/10.3389/fneur.2013.00016. PubMed PMID: 23460082; PMCID: 3586697.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Heffernan ME, Huang W, Sicard KM, Bratane BT, Sikoglu EM, Zhang N, Fisher M, King JA. Multi-modal approach for investigating brain and behavior changes in an animal model of traumatic brain injury. J Neurotrauma. 2013;30(11):1007–12. https://doi.org/10.1089/neu.2012.2366. PubMed PMID: 23294038; PMCID: 3684107.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Weber R, Ramos-Cabrer P, Wiedermann D, van Camp N, Hoehn M. A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat. NeuroImage. 2006;29(4):1303–10.

    Article  Google Scholar 

  31. Hetherington HP, Hamid H, Kulas J, Ling G, Bandak F, de Lanerolle NC, Pan JW. MRSI of the medial temporal lobe at 7 T in explosive blast mild traumatic brain injury. Magn Reson Med. 2014;71(4):1358–67. https://doi.org/10.1002/mrm.24814.

    Article  PubMed  Google Scholar 

  32. Harris JL, Yeh H-W, Choi I-Y, Lee P, Berman NE, Swerdlow RH, Craciunas SC, Brooks WM. Altered neurochemical profile after traumatic brain injury: 1H-MRS biomarkers of pathological mechanisms. J Cereb Blood Flow Metab. 2012;32(12):2122–34.

    Article  CAS  Google Scholar 

  33. Race N, Lai J, Shi R, Bartlett EL. Differences in postinjury auditory system pathophysiology after mild blast and nonblast acute acoustic trauma. Journal of Neurophysiology. 2017;118(2):782-99. https://doi.org/10.1152/jn.00710.2016

    Article  Google Scholar 

  34. Wang H, Zhang YP, Cai J, Shields LBE, Tuchek CA, Shi R, Li J, Shields CB, Xu X. A compact blast-induced traumatic brain injury model in mice. J Neuropathol Exp Neurol. 2016;75(2):183–96.

    Article  CAS  Google Scholar 

  35. Cernak I, Merkle AC, Koliatsos VE, Bilik JM, Luong QT, Mahota TM, Xu L, Slack N, Windle D, Ahmed FA. The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new experimental model of injury in mice. Neurobiol Dis. 2011;41(2):538–51. https://doi.org/10.1016/j.nbd.2010.10.025.

    Article  PubMed  Google Scholar 

  36. Tweedie D, Rachmany L, Rubovitch V, Zhang Y, Becker KG, Perez E, Hoffer BJ, Pick CG, Greig NH. Changes in mouse cognition and hippocampal gene expression observed in a mild physical- and blast-traumatic brain injury. Neurobiol Dis. 2013;54:1–11. https://doi.org/10.1016/j.nbd.2013.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Säljö A, Arrhén F, Bolouri H, Mayorga M, Hamberger A. Neuropathology and pressure in the pig brain resulting from low-impulse noise exposure. J Neurotrauma. 2008;25(12):1397–406.

    Article  Google Scholar 

  38. Li BC, Li Y, Xu C, Wang J, Chen Z, Li G, Zhang J, Hu S, Wang L, Feng H. Blast-induced traumatic brain injury of goats in confined space. Neurol Res. 2014;36(11):974–82.

    Article  Google Scholar 

  39. Knudsen SK, Øen EO. Blast-induced neurotrauma in whales. Neurosci Res. 2003;46(3):377–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riyi Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shi, R., Race, N. (2019). Mild Blast-Induced Traumatic Brain Injury Model. In: Chen, J., Xu, Z., Xu, X., Zhang, J. (eds) Animal Models of Acute Neurological Injury. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-030-16082-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16082-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16080-7

  • Online ISBN: 978-3-030-16082-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics