Skip to main content

Anesthesia and Analgesia for Research Animals

  • Chapter
  • First Online:
Animal Models of Acute Neurological Injury

Abstract

This chapter provides a general overview of anesthesia and analgesia of animals for acute neurologic surgical models. Injectable and inhalant anesthetic agents are discussed, as well as analgesia to control post-operative pain. The impact of anesthetic and analgesic agents on three common acute neurologic surgical models is reviewed. Common agents and doses listed by species are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the care and use of laboratory animals. 8th ed. Washington, DC: National Academies Press; 2011.

    Google Scholar 

  2. Flecknell P. Laboratory animal anaesthesia. Boston, MA: Elsevier; 2015.

    Google Scholar 

  3. Plumb DC. Plumb’s veterinary drug handbook. 8th ed. Stockholm, WI: PharmaVet Inc.; 2015.

    Google Scholar 

  4. Fish RE. Anesthesia and analgesia in laboratory animals. 2nd ed. London, UK: Academic Press; 2008.

    Google Scholar 

  5. Goodman LS, Brunton LL, Blumenthal DK, Murri N, Hilal-Dandan R. Goodman & Gilman’s The pharmacological basis of therapeutics. New York: McGraw-Hill Medical; 2011.

    Google Scholar 

  6. Hall LW, Clarke KW, Trim CM. Veterinary anaesthesia. London, UK: Saunders; 2001.

    Google Scholar 

  7. Harvey RC, Paddleford RR. Anesthesia for the central nervous systems adn opthalmic surgery. In: Slatter DS, editor. Textbook of small animal surgery. 2nd ed. Philadelphia: W.B. Saunders; 1993.

    Google Scholar 

  8. Liu S, Zhen G, Meloni BP, Campbell K, Winn HR. Rodent stroke model guidelines for preclinical stroke trials (1st edition). J Exp Stroke Transl Med. 2009;2(2):2–27.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Matchett GA, Allard MW, Martin RD, Zhang JH. Neuroprotective effect of volatile anesthetic agents: molecular mechanisms. Neurol Res. 2009;31(2):128–34. https://doi.org/10.1179/174313209x393546.

    Article  CAS  PubMed  Google Scholar 

  10. Salzman SK, Lee WA, Sabato S, Mendez AA, Agresta CA, Kelly G. Halothane anesthesia is neuroprotective in experimental spinal cord injury: early hemodynamic mechanisms of action. Res Commun Chem Pathol Pharmacol. 1993;80(1):59–81.

    CAS  PubMed  Google Scholar 

  11. Brunson DB. Pharmacology of inhalant anesthetics. Anesthesia and analgesia in laboratory animals. 2nd ed. San Diego, CA: Elsevier Inc.; 2008.

    Google Scholar 

  12. Gaertner DJ, Hallman TM, Hankenson C, Batchelder MA. Anesthesia and analgesia for laboratory rodents. In: Fish RE, Brown MJ, Danneman PJ, Karas AZ, editors. Anesthesia and analgesia in laboratory animals. 2nd ed. London, UK: Elsevier Inc.; 2008.

    Google Scholar 

  13. Flecknell PA, Lofgren JLS, Dyson MC, Marini RR, Swindle MM, Wilson RP. Preanesthesia, anesthesia, analgesia, and euthanasia. In: Fox JG, Anderson LC, Otto G, Pritchett-Corning KR, Whary MT, editors. Laboratory animal medicine. The American College of Laboratory Animal Medicine series. 3rd ed. London: Academic Press; 2015.

    Google Scholar 

  14. Animal Welfare Regulations. 2005.

    Google Scholar 

  15. U.S. Government Principles for the Utilization and Care of Vertebrate Animals Used in Testing, Research, and Training. Interagency Research Animal Committee. Public Health Service Policy on humane care and use of laboratory animals. Washington, DC: National Institutes of Health, Office of Laboratory Animal Welfare; 2002.

    Google Scholar 

  16. Rowe RK, Harrison JL, Thomas TC, Pauly JR, Adelson PD, Lifshitz J. Using anesthetics and analgesics in experimental traumatic brain injury. Lab Anim. 2013;42(8):286–91. https://doi.org/10.1038/laban.257.

    Article  Google Scholar 

  17. Jacobsen KR, Fauerby N, Raida Z, Kalliokoski O, Hau J, Johansen FF, Abelson KS. Effects of buprenorphine and meloxicam analgesia on induced cerebral ischemia in C57BL/6 male mice. Comp Med. 2013;63(2):105–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Roughan JV, Flecknell PA. Behaviour-based assessment of the duration of laparotomy-induced abdominal pain and the analgesic effects of carprofen and buprenorphine in rats. Behav Pharmacol. 2004;15(7):461–72.

    Article  CAS  PubMed  Google Scholar 

  19. Muir WW. Selecting analgesic drugs and routes of drug administration. In: Gaynor JS, Muir WW, editors. Handbook of veterinary pain management. 2nd ed. St. Louis: Mosby; 2009.

    Google Scholar 

  20. Heavner JE, Cooper DM. Pharmacology of analgesics. In: Fish RE, Brown MJ, Danneman PJ, Karas AZ, editors. Anesthesia and analgesia in laboratory animals, The American College of Laboratory Animal Medicine series. 2nd ed. London, UK: Academic Press; 2008.

    Google Scholar 

  21. Papich MG. Saunders handbook of veterinary drugs. 2nd ed. St. Louis, MO: Saunders Elsevier; 2007.

    Google Scholar 

  22. Thiede AJ, Garcia KD, Stolarik DF, Ma J, Jenkins GJ, Nunamaker EA. Pharmacokinetics of sustained-release and transdermal buprenorphine in Gottingen minipigs (Sus scrofa domestica). J Am Assoc Lab Anim Sci. 2014;53(6):692–9.

    PubMed  PubMed Central  Google Scholar 

  23. Kendall LV, Hansen RJ, Dorsey K, Kang S, Lunghofer PJ, Gustafson DL. Pharmacokinetics of sustained-release analgesics in mice. J Am Assoc Lab Anim Sci. 2014;53(5):478–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chum HH, Jampachairsri K, McKeon GP, Yeomans DC, Pacharinsak C, Felt SA. Antinociceptive effects of sustained-release buprenorphine in a model of incisional pain in rats (Rattus norvegicus). J Am Assoc Lab Anim Sci. 2014;53(2):193–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nunamaker EA, Stolarik DF, Ma J, Wilsey AS, Jenkins GJ, Medina CL. Clinical efficacy of sustained-release buprenorphine with meloxicam for postoperative analgesia in beagle dogs undergoing ovariohysterectomy. J Am Assoc Lab Anim Sci. 2014;53(5):494–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Catbagan DL, Quimby JM, Mama KR, Rychel JK, Mich PM. Comparison of the efficacy and adverse effects of sustained-release buprenorphine hydrochloride following subcutaneous administration and buprenorphine hydrochloride following oral transmucosal administration in cats undergoing ovariohysterectomy. Am J Vet Res. 2011;72(4):461–6. https://doi.org/10.2460/ajvr.72.4.461.

    Article  CAS  PubMed  Google Scholar 

  27. Budsberg S. Nonsteroidal antiinflammatory drugs. In: Gaynor JS, Muir WW, editors. Handbook of veterinary pain management. 2nd ed. St. Louis: Mosby; 2009.

    Google Scholar 

  28. Berrocal Y, Pearse DD, Singh A, Andrade CM, McBroom JS, Puentes R, Eaton MJ. Social and environmental enrichment improves sensory and motor recovery after severe contusive spinal cord injury in the rat. J Neurotrauma. 2007;24(11):1761–72. https://doi.org/10.1089/neu.2007.0327.

    Article  PubMed  Google Scholar 

  29. Jacqmain J, Nudi ET, Fluharty S, Smith JS. Pre and post-injury environmental enrichment effects functional recovery following medial frontal cortical contusion injury in rats. Behav Brain Res. 2014;275:201–11. https://doi.org/10.1016/j.bbr.2014.08.056.

    Article  PubMed  Google Scholar 

  30. Traystman RJ. Animal models of focal and global cerebral ischemia. ILAR J. 2003;44(2):85–95.

    Article  CAS  PubMed  Google Scholar 

  31. Krafft PR, Bailey EL, Lekic T, Rolland WB, Altay O, Tang J, Wardlaw JM, Zhang JH, Sudlow CL. Etiology of stroke and choice of models. Int J Stroke. 2012;7(5):398–406. https://doi.org/10.1111/j.1747-4949.2012.00838.x.

    Article  PubMed  PubMed Central  Google Scholar 

  32. DeBow S, Colbourne F. Brain temperature measurement and regulation in awake and freely moving rodents. Methods. 2003;30(2):167–71.

    Article  CAS  PubMed  Google Scholar 

  33. Campos F, Blanco M, Barral D, Agulla J, Ramos-Cabrer P, Castillo J. Influence of temperature on ischemic brain: basic and clinical principles. Neurochem Int. 2012;60(5):495–505. https://doi.org/10.1016/j.neuint.2012.02.003.

    Article  CAS  PubMed  Google Scholar 

  34. Sung JH, Shah FA, Gim SA, Koh PO. Identification of proteins in hyperglycemia and stroke animal models. J Surg Res. 2015; https://doi.org/10.1016/j.jss.2015.07.020.

    Article  CAS  PubMed  Google Scholar 

  35. Yamazaki Y, Harada S, Tokuyama S. Post-ischemic hyperglycemia exacerbates the development of cerebral ischemic neuronal damage through the cerebral sodium-glucose transporter. Brain Res. 2012;1489:113–20. https://doi.org/10.1016/j.brainres.2012.10.020.

    Article  CAS  PubMed  Google Scholar 

  36. Duverger D, MacKenzie ET. The quantification of cerebral infarction following focal ischemia in the rat: influence of strain, arterial pressure, blood glucose concentration, and age. J Cereb Blood Flow Metab. 1988;8(4):449–61. https://doi.org/10.1038/jcbfm.1988.86.

    Article  CAS  PubMed  Google Scholar 

  37. Saha JK, Xia JQ, Grondin JM, Engle SK, Jakubowski JA. Acute hyperglycemia induced by ketamine/xylazine anesthesia in rats: mechanisms and implications for preclinical models. Exp Biol Med. 2005;230(10):777–84.

    Article  CAS  Google Scholar 

  38. Zuurbier CJ, Keijzers PJ, Koeman A, Van Wezel HB, Hollmann MW. Anesthesia’s effects on plasma glucose and insulin and cardiac hexokinase at similar hemodynamics and without major surgical stress in fed rats. Anesth Analg. 2008;106(1):135–42. https://doi.org/10.1213/01.ane.0000297299.91527.74, table of contents

    Article  CAS  PubMed  Google Scholar 

  39. Turner RJ, Jickling GC, Sharp FR. Are underlying assumptions of current animal models of human stroke correct: from STAIRs to high hurdles? Transl Stroke Res. 2011;2(2):138–43. https://doi.org/10.1007/s12975-011-0067-3.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bleilevens C, Roehl AB, Goetzenich A, Zoremba N, Kipp M, Dang J, Tolba R, Rossaint R, Hein M. Effect of anesthesia and cerebral blood flow on neuronal injury in a rat middle cerebral artery occlusion (MCAO) model. Exp Brain Res. 2013;224(2):155–64. https://doi.org/10.1007/s00221-012-3296-0.

    Article  CAS  PubMed  Google Scholar 

  41. Kawaguchi M, Drummond JC, Cole DJ, Kelly PJ, Spurlock MP, Patel PM. Effect of isoflurane on neuronal apoptosis in rats subjected to focal cerebral ischemia. Anesth Analg. 2004;98(3):798–805.

    Article  CAS  PubMed  Google Scholar 

  42. Kawaguchi M, Furuya H, Patel PM. Neuroprotective effects of anesthetic agents. J Anesth. 2005;19(2):150–6. https://doi.org/10.1007/s00540-005-0305-5.

    Article  PubMed  Google Scholar 

  43. Hoffman WE, Pelligrino D, Werner C, Kochs E, Albrecht RF, Schulte am Esch J. Ketamine decreases plasma catecholamines and improves outcome from incomplete cerebral ischemia in rats. Anesthesiology. 1992;76(5):755–62.

    Article  CAS  PubMed  Google Scholar 

  44. Saha JK, Xia J, Grondin JM, Engle SK, Jakubowski JA. Acute hyperglycemia induced by ketamine/xylazine anesthesia in rats: mechanisms and implications for preclinical models. Exp Biol Med (Maywood). 2005;230(10):777–84.

    Article  CAS  Google Scholar 

  45. Adembri C, Venturi L, Pellegrini-Giampietro DE. Neuroprotective effects of propofol in acute cerebral injury. CNS Drug Rev. 2007;13(3):333–51. https://doi.org/10.1111/j.1527-3458.2007.00015.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Howells DW, Porritt MJ, Rewell SS, O’Collins V, Sena ES, van der Worp HB, Traystman RJ, Macleod MR. Different strokes for different folks: the rich diversity of animal models of focal cerebral ischemia. J Cereb Blood Flow Metab. 2010;30(8):1412–31. https://doi.org/10.1038/jcbfm.2010.66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Candelario-Jalil E, Gonzalez-Falcon A, Garcia-Cabrera M, Alvarez D, Al-Dalain S, Martinez G, Leon OS, Springer JE. Assessment of the relative contribution of COX-1 and COX-2 isoforms to ischemia-induced oxidative damage and neurodegeneration following transient global cerebral ischemia. J Neurochem. 2003;86(3):545–55. https://doi.org/10.1046/j.1471-4159.2003.01812.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. del Zoppo GJ, Becker KJ, Hallenbeck JM. Inflammation after stroke – is it harmful? Arch Neurol. 2001;58(4):669–72. https://doi.org/10.1001/archneur.58.4.669.

    Article  PubMed  Google Scholar 

  49. Iadecola C, Alexander M. Cerebral ischemia and inflammation. Curr Opin Neurol. 2001;14(1):89–94. https://doi.org/10.1097/00019052-200102000-00014.

    Article  CAS  PubMed  Google Scholar 

  50. Kalliokoski O, Abelson KS, Koch J, Boschian A, Thormose SF, Fauerby N, Rasmussen RS, Johansen FF, Hau J. The effect of voluntarily ingested buprenorphine on rats subjected to surgically induced global cerebral ischaemia. In Vivo. 2010;24(5):641–6.

    CAS  PubMed  Google Scholar 

  51. Namjoshi DR, Good C, Cheng WH, Panenka W, Richards D, Cripton PA, Wellington CL. Towards clinical management of traumatic brain injury: a review of models and mechanisms from a biomechanical perspective. Dis Model Mech. 2013;6(6):1325–38. https://doi.org/10.1242/dmm.011320.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Thal SC, Timaru-Kast R, Wilde F, Merk P, Johnson F, Frauenknecht K, Sebastiani A, Sommer C, Staib-Lasarzik I, Werner C, Engelhard K. Propofol impairs neurogenesis and neurologic recovery and increases mortality rate in adult rats after traumatic brain injury. Crit Care Med. 2014;42(1):129–41. https://doi.org/10.1097/CCM.0b013e3182a639fd.

    Article  CAS  PubMed  Google Scholar 

  53. Yurdakoc A, Gunday I, Memis D. Effects of halothane, isoflurane, and sevoflurane on lipid peroxidation following experimental closed head trauma in rats. Acta Anaesthesiol Scand. 2008;52(5):658–63. https://doi.org/10.1111/j.1399-6576.2008.01635.x.

    Article  CAS  PubMed  Google Scholar 

  54. Statler KD, Alexander H, Vagni V, Holubkov R, Dixon CE, Clark RS, Jenkins L, Kochanek PM. Isoflurane exerts neuroprotective actions at or near the time of severe traumatic brain injury. Brain Res. 2006;1076(1):216–24. https://doi.org/10.1016/j.brainres.2005.12.106.

    Article  CAS  PubMed  Google Scholar 

  55. O’Connor CA, Cernak I, Vink R. Interaction between anesthesia, gender, and functional outcome task following diffuse traumatic brain injury in rats. J Neurotrauma. 2003;20(6):533–41. https://doi.org/10.1089/089771503767168465.

    Article  PubMed  Google Scholar 

  56. Goren S, Kahveci N, Alkan T, Goren B, Korfali E. The effects of sevoflurane and isoflurane on intracranial pressure and cerebral perfusion pressure after diffuse brain injury in rats. J Neurosurg Anesthesiol. 2001;13(2):113–9.

    Article  CAS  PubMed  Google Scholar 

  57. Statler KD, Alexander H, Vagni V, Dixon CE, Clark RS, Jenkins L, Kochanek PM. Comparison of seven anesthetic agents on outcome after experimental traumatic brain injury in adult, male rats. J Neurotrauma. 2006;23(1):97–108. https://doi.org/10.1089/neu.2006.23.97.

    Article  PubMed  Google Scholar 

  58. Kamnaksh A, Kovesdi E, Kwon SK, Wingo D, Ahmed F, Grunberg NE, Long J, Agoston DV. Factors affecting blast traumatic brain injury. J Neurotrauma. 2011;28(10):2145–53. https://doi.org/10.1089/neu.2011.1983.

    Article  PubMed  Google Scholar 

  59. Cole JT, Yarnell A, Kean WS, Gold E, Lewis B, Ren M, McMullen DC, Jacobowitz DM, Pollard HB, O’Neill JT, Grunberg NE, Dalgard CL, Frank JA, Watson WD. Craniotomy: true sham for traumatic brain injury, or a sham of a sham? J Neurotrauma. 2011;28(3):359–69. https://doi.org/10.1089/neu.2010.1427.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Turner CP, Gutierrez S, Liu C, Miller L, Chou J, Finucane B, Carnes A, Kim J, Shing E, Haddad T, Phillips A. Strategies to defeat ketamine-induced neonatal brain injury. Neuroscience. 2012;210:384–92. https://doi.org/10.1016/j.neuroscience.2012.02.015.

    Article  CAS  PubMed  Google Scholar 

  61. Zheng H, Dong Y, Xu Z, Crosby G, Culley DJ, Zhang Y, Xie Z. Sevoflurane anesthesia in pregnant mice induces neurotoxicity in fetal and offspring mice. Anesthesiology. 2013;118(3):516–26. https://doi.org/10.1097/ALN.0b013e3182834d5d.

    Article  CAS  PubMed  Google Scholar 

  62. Hakan T, Toklu HZ, Biber N, Ozevren H, Solakoglu S, Demirturk P, Aker FV. Effect of COX-2 inhibitor meloxicam against traumatic brain injury-induced biochemical, histopathological changes and blood-brain barrier permeability. Neurol Res. 2010;32(6):629–35. https://doi.org/10.1179/016164109x12464612122731.

    Article  CAS  PubMed  Google Scholar 

  63. Friess SH, Naim MY, Kilbaugh TJ, Ralston J, Margulies SS. Premedication with meloxicam exacerbates intracranial haemorrhage in an immature swine model of non-impact inertial head injury. Lab Anim. 2012;46(2):164–6. https://doi.org/10.1258/la.2011.011084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Surgery AAoOHaN. Perforated eardrum. 2015. http://www.entnet.org/content/perforated-eardrum.

  65. Shridharani JK, Wood GW, Panzer MB, Capehart BP, Nyein MK, Radovitzky RA, Bass CR. Porcine head response to blast. Front Neurol. 2012;3:70. https://doi.org/10.3389/fneur.2012.00070.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yanagawa Y, Marcillo A, Garcia-Rojas R, Loor KE, Dietrich WD. Influence of posttraumatic hypoxia on behavioral recovery and histopathological outcome following moderate spinal cord injury in rats. J Neurotrauma. 2001;18(6):635–44. https://doi.org/10.1089/089771501750291873.

    Article  CAS  PubMed  Google Scholar 

  67. Guha A, Tator CH, Rochon J. Spinal cord blood flow and systemic blood pressure after experimental spinal cord injury in rats. Stroke. 1989;20(3):372–7.

    Article  CAS  PubMed  Google Scholar 

  68. Nout YS, Beattie MS, Bresnahan JC. Severity of locomotor and cardiovascular derangements after experimental high-thoracic spinal cord injury is anesthesia dependent in rats. J Neurotrauma. 2012;29(5):990–9. https://doi.org/10.1089/neu.2011.1845.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lee KZ, Huang YJ, Tsai IL. Respiratory motor outputs following unilateral midcervical spinal cord injury in the adult rat. J Appl Physiol (1985). 2014;116(4):395–405. https://doi.org/10.1152/japplphysiol.01001.2013.

    Article  Google Scholar 

  70. Andrews RJ, Bringas JR, Alonzo G. Cerebrospinal fluid pH and PCO2 rapidly follow arterial blood pH and PCO2 with changes in ventilation. Neurosurgery. 1994;34(3):466–70; discussion 470.

    Article  CAS  PubMed  Google Scholar 

  71. Horn EM, Theodore N, Assina R, Spetzler RF, Sonntag VK, Preul MC. The effects of intrathecal hypotension on tissue perfusion and pathophysiological outcome after acute spinal cord injury. Neurosurg Focus. 2008;25(5):E12. https://doi.org/10.3171/FOC.2008.25.11.E12.

    Article  PubMed  Google Scholar 

  72. Inoue S, Mori A, Shimizu H, Yoshitake A, Tashiro R, Kabei N, Yozu R. Combined use of an epidural cooling catheter and systemic moderate hypothermia enhances spinal cord protection against ischemic injury in rabbits. J Thorac Cardiovasc Surg. 2013;146(3):696–701. https://doi.org/10.1016/j.jtcvs.2012.11.040.

    Article  PubMed  Google Scholar 

  73. Yu CG, Jimenez O, Marcillo AE, Weider B, Bangerter K, Dietrich WD, Castro S, Yezierski RP. Beneficial effects of modest systemic hypothermia on locomotor function and histopathological damage following contusion-induced spinal cord injury in rats. J Neurosurg. 2000;93(1 Suppl):85–93.

    CAS  PubMed  Google Scholar 

  74. Kang J, Albadawi H, Casey PJ, Abbruzzese TA, Patel VI, Yoo HJ, Cambria RP, Watkins MT. The effects of systemic hypothermia on a murine model of thoracic aortic ischemia reperfusion. J Vasc Surg. 2010;52(2):435–43. https://doi.org/10.1016/j.jvs.2010.03.021.

    Article  PubMed  Google Scholar 

  75. Tang SH, Yu JG, Li JJ, Sun JY. Neuroprotective effect of ketamine on acute spinal cord injury in rats. Genet Mol Res. 2015;14(2):3551–6. https://doi.org/10.4238/2015.April.17.4.

    Article  CAS  PubMed  Google Scholar 

  76. Kose EA, Bakar B, Ayva SK, Kilinc K, Apan A. Neuroprotective effects of racemic ketamine and (S)-ketamine on spinal cord injury in rat. Injury. 2012;43(7):1124–30. https://doi.org/10.1016/j.injury.2012.02.022.

    Article  PubMed  Google Scholar 

  77. Yu QJ, Zhou QS, Huang HB, Wang YL, Tian SF, Duan DM. Protective effect of ketamine on ischemic spinal cord injury in rabbits. Ann Vasc Surg. 2008;22(3):432–9. https://doi.org/10.1016/j.avsg.2008.03.003.

    Article  PubMed  Google Scholar 

  78. Lips J, de Haan P, Bodewits P, Vanicky I, Dzoljic M, Jacobs MJ, Kalkman CJ. Neuroprotective effects of riluzole and ketamine during transient spinal cord ischemia in the rabbit. Anesthesiology. 2000;93(5):1303–11.

    Article  CAS  PubMed  Google Scholar 

  79. Bell MT, Puskas F, Bennett DT, Herson PS, Quillinan N, Fullerton DA, Reece TB. Dexmedetomidine, an alpha-2a adrenergic agonist, promotes ischemic tolerance in a murine model of spinal cord ischemia-reperfusion. J Thorac Cardiovasc Surg. 2014;147(1):500–6. https://doi.org/10.1016/j.jtcvs.2013.07.043.

    Article  CAS  PubMed  Google Scholar 

  80. Gul S, Hanci V, Bahadir B, Acikgoz S, Bektas S, Ankarali H, Kalayci M, Acikgoz B. The effectiveness of dexmedetomidine in experimental spinal cord injury compared to methylprednisolone in rats. J Clin Neurosci. 2010;17(4):490–4. https://doi.org/10.1016/j.jocn.2009.05.041.

    Article  CAS  PubMed  Google Scholar 

  81. Winkler T, Sharma HS, Stalberg E, Westman J. Benzodiazepine receptors influence spinal cord evoked potentials and edema following trauma to the rat spinal cord. Acta Neurochir Suppl. 1997;70:216–9.

    CAS  PubMed  Google Scholar 

  82. Zhou YJ, Liu JM, Wei SM, Zhang YH, Qu ZH, Chen SB. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation. Neural Regen Res. 2015;10(8):1305–11. https://doi.org/10.4103/1673-5374.162765.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ding Q, Wang Q, Deng J, Gu Q, Hu S, Li Y, Su B, Zeng Y, Xiong L. Sevoflurane preconditioning induces rapid ischemic tolerance against spinal cord ischemia/reperfusion through activation of extracellular signal-regulated kinase in rabbits. Anesth Analg. 2009;109(4):1263–72. https://doi.org/10.1213/ane.0b013e3181b2214c.

    Article  CAS  PubMed  Google Scholar 

  84. Park HP, Jeon YT, Hwang JW, Kang H, Lim SW, Kim CS, Oh YS. Isoflurane preconditioning protects motor neurons from spinal cord ischemia: its dose-response effects and activation of mitochondrial adenosine triphosphate-dependent potassium channel. Neurosci Lett. 2005;387(2):90–4. https://doi.org/10.1016/j.neulet.2005.06.072.

    Article  CAS  PubMed  Google Scholar 

  85. Lopez S, Dadure C, Vergnes C, Capdevila X. Intrathecal bupivacaine protects against extension of lesions in an acute contusive spinal cord injury model. Eur J Anaesthesiol. 2006;23(9):793–800. https://doi.org/10.1017/s0265021506000615.

    Article  CAS  PubMed  Google Scholar 

  86. Breckwoldt WL, Genco CM, Connolly RJ, Cleveland RJ, Diehl JT. Spinal cord protection during aortic occlusion: efficacy of intrathecal tetracaine. Ann Thorac Surg. 1991;51(6):959–63.

    Article  CAS  PubMed  Google Scholar 

  87. Apaydin AZ, Buket S. Regional lidocaine infusion reduces postischemic spinal cord injury in rabbits. Tex Heart Inst J. 2001;28(3):172–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Haghighi SS, Chehrazi BB, Higgins RS, Remington WJ, Wagner FC. Effect of lidocaine treatment on acute spinal cord injury. Neurosurgery. 1987;20(4):536–41.

    Article  CAS  PubMed  Google Scholar 

  89. Hakan T, Toklu HZ, Biber N, Celik H, Erzik C, Ogunc AV, Cetinel S, Sener G. Meloxicam exerts neuroprotection on spinal cord trauma in rats. Int J Neurosci. 2011;121(3):142–8. https://doi.org/10.3109/00207454.2010.537415.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa J. Brossia-Root .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brossia-Root, L.J., Cotroneo, T.M., Hish, G. (2019). Anesthesia and Analgesia for Research Animals. In: Chen, J., Xu, Z., Xu, X., Zhang, J. (eds) Animal Models of Acute Neurological Injury. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-030-16082-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16082-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16080-7

  • Online ISBN: 978-3-030-16082-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics