Skip to main content

Extending the Classical Skein

  • Conference paper
  • First Online:
Knots, Low-Dimensional Topology and Applications (KNOTS16 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 284))

Included in the following conference series:

  • 971 Accesses

Abstract

We summarize the theory of a new skein invariant of classical links H[H] that generalizes the regular isotopy version of the Homflypt polynomial, H. The invariant H[H] is based on a procedure where we apply the skein relation only to crossings of distinct components, so as to produce collections of unlinked knots and then we evaluate the resulting knots using the invariant H and inserting at the same time a new parameter. This procedure, remarkably, leads to a generalization of H but also to generalizations of other known skein invariants, such as the Kauffman polynomial. We discuss the different approaches to the link invariant H[H], the algebraic one related to its ambient isotopy equivalent invariant \(\Theta \), the skein-theoretic one and its reformulation into a summation of the generating invariant H on sublinks of a given link. We finally give examples illustrating the behaviour of the invariant H[H] and we discuss further research directions and possible application areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Aicardi, J. Juyumaya, Markov trace on the algebra of braids and ties. Moscow Math. J. 16(3), 397–431 (2016)

    Article  MathSciNet  Google Scholar 

  2. F. Aicardi, J. Juyumaya, Tied Links. J. Knot Theory Ramif. 25(9), 1641001 (2016)

    Google Scholar 

  3. F. Aicardi, J. Juyumaya, Kauffman type invariants for tied links. J. Mathematische Zeitschrift (2017). https://doi.org/10.1007/s00209-017-1966-0

  4. J.W. Alexander, Topological invariants of knots and links. Trans. Am. Math. Soc. 30(2), 275–306 (1928)

    Article  MathSciNet  Google Scholar 

  5. J.H. Conway, An enumeration of knots and links and some of their algebraic properties, in Computational Problems in Abstract Algebra (Proc. Conf. Oxford, 1967) (Pergamon, Oxford, 1970), pp. 329–358

    Google Scholar 

  6. R. Brandt, W.B.R. Lickorish, K.C. Millett, A polynomial invariant for unoriented knots and links. Invent. Math. 84, 563–573 (1986)

    Article  MathSciNet  Google Scholar 

  7. J.C. Cha, C. Livingston, LinkInfo: Table of Knot Invariants (2015). http://www.indiana.edu/~linkinfo

  8. M. Chlouveraki, D. Goundaroulis, A. Kontogeorgis, S. Lambropoulou, A skein relation for Khovanov homology and a categorification of the \(\theta \)-invariant. Submitted for publication

    Google Scholar 

  9. M. Chlouveraki, J. Juyumaya, K. Karvounis, S. Lambropoulou, Identifying the invariants for classical knots and links from the Yokonuma–Hecke algebra. Int. Math. Res. Notices 74 (2018). https://doi.org/10.1093/imrn/rny013.

  10. M. Chlouveraki, S. Lambropoulou, The Yokonuma–Hecke algebras and the Homflypt polynomial. J. Knot Theory Ramif. 22(14), 1350080 (2013)

    Google Scholar 

  11. M. Chlouveraki, G. Pouchin, Determination of the representations and a basis for the Yokonuma-Temperley-Lieb algebra. Algebras Representation Theory 18 (2015)

    Google Scholar 

  12. M. Chlouveraki, G. Pouchin, Representation theory and an isomorphism theorem for the Framisation of the Temperley-Lieb algebra. Mathematische Zeitschrift 285(3), 1357–1380 (2017)

    Article  MathSciNet  Google Scholar 

  13. M. Chlouveraki, L. Poulain d’Andecy, Representation theory of the Yokonuma–Hecke algebra. Adv. Math. 259, 134–172 (2014)

    Google Scholar 

  14. M. Chlouveraki, L. Poulain D’ Andecy, Markov trace on affine and cyclotomic Yokonuma–Hecke algebras. Int. Math. Res. Notices (14), 4167–4228 (2016). https://doi.org/10.1093/imrn/rnv257.

  15. S. Chmutov, S. Jablan, K. Karvounis, S. Lambropoulou, On the knot invariants from the Yokonuma–Hecke algebras. J. Knot Theory Ramif. 25(9) (2016). https://doi.org/10.1142/S0218216516410042

  16. I. Diamantis, S. Lambropoulou, The Braid Approach to the HOMFLYPT Skein Module of the Lens Spaces \(L(p,1)\), in Algebraic Modeling of Topological and Computational Structures and Applications, Athens, Greece, July 1–3, 2015, vol. 219, Springer Proceedings in Mathematics and Statistics (PROMS), ed. by S. Lambropoulou, P. Stefaneas, D. Theodorou, L.H. Kauffman, 2017. https://doi.org/10.1007/978-3-319-68103-0

  17. S. Eliahou, L.H. Kauffman, M.B. Thistlethwaite, Infinite families of links with trivial Jones polynomial. Topology 42, 155–169 (2003)

    Article  MathSciNet  Google Scholar 

  18. C. Ernst, D.W. Sumners, Solving tangle equations arising in a DNA recombination model. Math. Proc. Camb. Philos. Soc. 126(1), 23–36 (1999)

    Article  MathSciNet  Google Scholar 

  19. M. Flores, J. Juyumaya, S. Lambropoulou, A Framization of the Hecke algebra of Type B. J. Pure Appl. Algebra (2017). https://doi.org/10.1016/j.jpaa.2017.05.006

  20. P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, K.C. Millett, A. Ocneanu, A new polynomial invariant of knots and links. Bull. AMS 12, 239–246 (1985)

    Article  MathSciNet  Google Scholar 

  21. B. Gabrovšek, M. Mroczkowski, The Homlypt skein module of the lens spaces \(L(p,1)\). Topol. Appl. 175, 72–80 (2014)

    Google Scholar 

  22. D. Goundaroulis, Framization of the Temperley-Lieb algebra and related link invariants, Ph.D. thesis, Department of Mathematics, National Technical University of Athens (2014)

    Google Scholar 

  23. D. Goundaroulis, J. Juyumaya, A. Kontogeorgis, S. Lambropoulou, The Yokonuma-Temperley-Lieb algebra. Banach Center Pub. 103, 73–95 (2014)

    Google Scholar 

  24. D. Goundaroulis, J. Juyumaya, A. Kontogeorgis, S. Lambropoulou, Framization of the Temperley–Lieb algebra. Math. Res. Lett. 24(2), 299–345 (2017). http://dx.doi.org/10.4310/MRL.2017.v24.n2.a3

  25. D. Goundaroulis, S. Lambropoulou, Classical link invariants from the framizations of the Iwahori–Hecke algebra and the Temperley–Lieb algebra of type \(A\). J. Knot Theory Ramif. 26(9) (2017). https://doi.org/10.1142/S0218216517430052

  26. D. Goundaroulis, S. Lambropoulou, A new two-variable generalization of the Jones polynomial. J. Knot Theory Ramif. (2016). To appear. Special issue dedicated to the Proceedings of the International Conference on Knots, Low-dimensional Topology and Applications—Knots in Hellas 2016. arXiv:1608.01812 [math.GT]

  27. J. Hoste, M. Kidwell, Dichromatic link invariants. Trans. Am. Math. Soc. 321(1), 197–229 (1990)

    Article  MathSciNet  Google Scholar 

  28. N. Jacon, L. Poulain d’Andecy, An isomorphism theorem for Yokonuma–Hecke algebras and applications to link invariants. Mathematische Zeitschrift 283, 301–338 (2016)

    Google Scholar 

  29. V.F.R. Jones, A polynomial invariant for knots via von Neumann algebras. Bull. Am. Math. Soc. (N.S.) 12(1), 103–111 (1985)

    Google Scholar 

  30. V.F.R. Jones, Hecke algebra representations of braid groups and link polynomials. Ann. Math. 126(2), 335–388 (1987)

    Article  MathSciNet  Google Scholar 

  31. J. Juyumaya, Markov trace on the Yokonuma-Hecke algebra. J. Knot Theory Ramif. 13, 25–39 (2004)

    Article  MathSciNet  Google Scholar 

  32. J. Juyumaya, A partition temperley–Lieb algebra (2013). arXiv:1304.5158 [math.QA]

  33. J. Juyumaya, S. Lambropoulou, An invariant for singular knots. J. Knot Theory Ramif. 18(6), 825–840 (2009)

    Article  MathSciNet  Google Scholar 

  34. J. Juyumaya, S. Lambropoulou, \(p\)-adic framed braids II. Adv. Math. 234, 149–191 (2013)

    Google Scholar 

  35. J. Juyumaya, S. Lambropoulou, An adelic extension of the Jones polynomial, in The mathematics of knots, vol. 1, Contributions in the Mathematical and Computational Sciences, ed. by M. Banagl, D. Vogel (Springer, Berlin, 2009), pp. 825–840

    Google Scholar 

  36. J. Juyumaya, S. Lambropoulou, Modular framization of the BMW algebra (2010). arXiv:1007.0092v1 [math.GT]

  37. J. Juyumaya, S. Lambropoulou, On the framization of knot algebras, in New Ideas in Low-dimensional Topology, Series on Knots and Everything, ed. by L.H. Kauffman, V. Manturov (World Scientific, Singapore, 2014). arXiv:1406.6849v1 [math.GT]

  38. K. Karvounis, Enabling computations for link invariants coming from the Yokonuma-Hecke algebras. J. Knot Theory Ramif. 25(9) (2016). https://doi.org/10.1142/S0218216516410042

  39. Private communication with K. Karvounis, April 2017

    Google Scholar 

  40. K. Karvounis, S. Lambropoulou, Link invariants from the Yokonuma-Hecke algebras, in Algebraic Modeling of Topological and Computational Structures and Applications, THALES, Athens, Greece, July 1–3, 2015, vol. 219, Springer Proceedings in Mathematics and Statistics (PROMS), ed. by S. Lambropoulou, P. Stefaneas, D. Theodorou, L.H. Kauffman, 2017. https://doi.org/10.1007/978-3-319-68103-0

  41. L.H. Kauffman, State models and the Jones polynomial. Topology 26(3), 395–407 (1987)

    Article  MathSciNet  Google Scholar 

  42. L.H. Kauffman, An invariant of regular isotopy. Trans. Am. Math. Soc. 318, 417–471 (1990)

    Article  MathSciNet  Google Scholar 

  43. L.H. Kauffman, State models for link polynomials. Enseignement Math. 36(2), 1–37 (1990)

    MathSciNet  MATH  Google Scholar 

  44. L.H. Kauffman, Knots and Physics, vol. 53, 4th edn., Series on Knots and Everything (World Scientific Publishing Co. Pte. Ltd., NJ, 2013)

    Google Scholar 

  45. L.H. Kauffman, S. Lambropoulou, Skein invariants of links and their state sum models. Symmetry 9, 226 (2017). https://doi.org/10.3390/sym9100226.

  46. L.H. Kauffman, S. Lambropoulou, New skein invariants of links. Submitted for publication. arXiv:1703.03655

  47. https://en.wikipedia.org/wiki/Kinetoplast

  48. S. Lambropoulou, Solid torus links and Hecke algebras of B-type, in Quantum Topology, ed. by D.N. Yetter (World Scientific Press, Singapore, 1994), pp. 225–245

    Google Scholar 

  49. S. Lambropoulou, Knot theory related to generalized and cyclotomic Hecke algebras of Type B. J. Knot Theory Ramif. 8(5), 621–658 (1999)

    Article  MathSciNet  Google Scholar 

  50. W.B.R. Lickorish, K.C. Millett, A polynomial invariant of oriented links. Topology 26(1), 107–141 (1987)

    Article  MathSciNet  Google Scholar 

  51. D. Michieletto, D. Marenduzzo, M.S. Turner, Topology Regulation during Replication of the Kinetoplast DNA. arXiv:1408.4237 [cond-mat.soft]

  52. A. Ocneanu, A polynomial invariant for knots—A combinatorial and algebraic approach (1984). Preprint MSRI, Berkeley

    Google Scholar 

  53. L. Poulain d’Andecy, E. Wagner, The HOMFLYPT polynomials of sublinks and the Yokonuma–Hecke algebras. Proc. R. Soc. Edinburgh A. To appear

    Google Scholar 

  54. J.H. Przytycki, P. Traczyk, Invariants of links of Conway type. Kobe J. Math. 4, 115–139 (1987)

    MathSciNet  MATH  Google Scholar 

  55. J.H. Przytycki, Skein modules of 3-manifolds. Bull. Pol. Acad. Sci.: Math. 39(1–2), 91–100 (1991)

    Google Scholar 

  56. R.L. Ricca, X. Liu, HOMFLYPT polynomial is the best quantifier for topological cascades of vortex knots. Fluid Dyn. Res. 50, 011404 (2018)

    Article  MathSciNet  Google Scholar 

  57. M.W. Scheeler, D. Kleckner, D. Proment, G.L. Kindlmann, W.T.M. Irvine, Helicity conservation by flow across scales in reconnecting vortex links and knots. arXiv:1404.6513 [physics.flu-dyn]

  58. M. Thistlethwaite, Links with trivial Jones polynomial. J. Knot Theory Ramif. 10, 641–643 (2001)

    Article  MathSciNet  Google Scholar 

  59. V.G. Turaev, The Conway and Kauffman modules of the solid torus. Zap. Nauchn. Sem. Lomi 167, 79–89. English translation: J. Soviet Math. 1990, 2799–2805 (1988)

    Google Scholar 

Download references

Acknowledgements

Louis H. Kauffman’ s work was supported by the Laboratory of Topology and Dynamics, Novosibirsk State University (contract no. 14.Y26.31.0025 with the Ministry of Education and Science of the Russian Federation). Sofia Lambropoulou’s work has been co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: THALES: Reinforcement of the interdisciplinary and/or inter-institutional research and innovation, MIS: 380154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Lambropoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kauffman, L.H., Lambropoulou, S. (2019). Extending the Classical Skein. In: Adams, C., et al. Knots, Low-Dimensional Topology and Applications. KNOTS16 2016. Springer Proceedings in Mathematics & Statistics, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-16031-9_11

Download citation

Publish with us

Policies and ethics