Skip to main content

Evolution and Development of the Indian Monsoon

  • Chapter
  • First Online:
Geodynamics of the Indian Plate

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

The Indian monsoon is a complex oceanic-atmospheric-coupled mechanism of the tropics that plays a key role in inter-hemispheric heat transfer on Earth. The summer monsoon brings moisture to the highly populated South Asian countries and affects the livelihood of more than a billion people. The intensity of the monsoon significantly influences the ecological diversity and hydrological reservoirs across the South Asian region. However, the intensity of the monsoon greatly varies spatially and temporally, driven by both external and internal forcing factors. Modeling and palaeoclimatic studies indicate several phases of strong and weak summer monsoon rainfall caused by changes in solar insolation, snow accumulation in western Europe, El Niño-Southern Oscillation, North Atlantic Oscillations and sea surface temperature in the Indian and Pacific Oceans. The initiation and strengthening of the Indian monsoon during the middle-late Miocene are sometimes linked with phases of major surface uplift of the Himalayan and/or Tibetan Plateau. The Plio-Pleistocene glaciation prompted a strong winter monsoon and a weak summer monsoon. During the early Holocene, the summer monsoon strengthened and subsequently weakened with two major phases of sudden rainfall reduction at ~8.2 and ~4.2 kyr BP; the latter event caused significant societal impact including the migration of population of the Indus Valley Civilization. In the last millennium, the Indian summer monsoon (ISM) was strong during the Medieval Warm Period (MWP) now designated as Medieval Climate Anomaly (MCA) and Current Warm Period (CWP), punctuated by a weak phase during the Little Ice Age (LIA). Meteorological records indicate an increasing trend in the intensity and frequency of extreme rainfall events in the last few decades leading to widespread floods and droughts. High-resolution climatic records from marine as well as continental archives improve our understanding of Indian monsoon variability and its forcing factors on different time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnihotri R, Dutta K, Bhushan R et al (2002) Evidence for solar forcing on the Indian monsoon during the last millennium. Earth Planet Sci Lett 198:521–527

    Article  Google Scholar 

  • Allen MB, Armstrong HA (2012) Reconciling the Intertropical Convergence Zone, Himalayan/Tibetan tectonics, and the onset of the Asian monsoon system. J Asian Earth Sci 44:36–47

    Article  Google Scholar 

  • Alley RB, Mayewski PA, Sowers T et al (1997) Holocene climatic instability: a prominent, widespread event 8,200 years ago. Geology 25:483–486

    Article  Google Scholar 

  • An Z, Kutzbach JE, Prell WL et al (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since late Miocene times. Nature 411:62–66

    Article  Google Scholar 

  • Anderson DM, Prell WL (1993) A 300 kyr record of upwelling off Oman during the late Quaternary: evidence of the Asian southwest monsoon. Paleoceanography 8(2):193–208

    Article  Google Scholar 

  • Anderson DM, Overpeck JT, Gupta AK (2002) Increase in the Asian southwest monsoon during the past four centuries. Science 297:596–599

    Article  Google Scholar 

  • Armstrong HA, Allen MB (2011) Shifts in the intertropical convergence zone, Himalayan exhumation, and late Cenozoic climate. Geology 39(1):11–14

    Article  Google Scholar 

  • Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall. Geophys Res Lett 28:4499–4502

    Article  Google Scholar 

  • Bamzai AS, Shukla J (1999) Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: an observational study. J Clim 12(10):3117–3132

    Article  Google Scholar 

  • Barker PF (2001) Scotia Sea regional tectonic evolution: implications for mantle flow and palaeocirculation. Earth Sci Rev 55:1–39

    Article  Google Scholar 

  • Barker PF, Thomas E (2004) Origin, signature and palaeoclimatic influence of the Antarctic circumpolar current. Earth Sci Rev 66:143–162

    Article  Google Scholar 

  • Berkelhammer M, Sinha A, Stott L et al (2012) An abrupt shift in the Indian monsoon 4000 years ago. Am Geophys Union Geophys Monogr Ser 198:75–87

    Google Scholar 

  • Betzler C, Eberli GP, Kroon D et al (2016) The abrupt onset of the modern South Asian Monsoon winds. Sci Rep 6:29838

    Article  Google Scholar 

  • Bisht P, Ali SN, Shukla AD et al (2015) Chronology of late Quaternary glaciation and landform evolution in the upper Dhauliganga valley, (Trans Himalaya), Uttarakhand, India. Quat Sci Rev 129:147–162

    Article  Google Scholar 

  • Blanford HF (1886) Rainfall of India. Mem India Meteorol Dep 2:217–448

    Google Scholar 

  • Blisniuk PM, Hacker BR, Glodny J et al (2001) Normal faulting in Central Tibet since at least 13.5 Ma. Nature 412:628–632

    Article  Google Scholar 

  • Boos WR, Kuang Z (2010) Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463(7278):218–222

    Article  Google Scholar 

  • Boos WR, Kuang Z (2013) Sensitivity of the South Asian monsoon to elevated and non-elevated heating. Sci Rep 3:1192

    Article  Google Scholar 

  • Breitenbach SF, Adkins JF, Meyer H et al (2010) Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth Planet Sci Lett 292(1–2):212–220

    Article  Google Scholar 

  • Burbank DW, Derry LA, Lanord CF (1993) Reduced Himalayan sediment production 8 Ma ago despite an intensified monsoon. Nature 364(6432):48–50

    Article  Google Scholar 

  • Burbank DW, Blythe AE, Putkonen J et al (2003) Decoupling of erosion and precipitation in the Himalayas. Nature 426(6967):652–655

    Article  Google Scholar 

  • Charney JG (1969) The intertropical convergence zone and the Hadley circulation of the atmosphere. Proc WMO/IUCG Symp Numer Weather Predict Jpn Meteorol Agency III:73–79

    Google Scholar 

  • Chen MT, Huang CY (1998) Ice-volume forcing of winter monsoon climate in the South China Sea. Paleoceanography 13(6):622–633

    Article  Google Scholar 

  • Chen M, Wang R, Yang L et al (2003) Development of east Asian summer monsoon environments in the late Miocene: radiolarian evidence from Site 1143 of ODP Leg 184. Mar Geol 201:169–177

    Article  Google Scholar 

  • Clemens SC, Prell WL (1990) Late Pleistocene variability of Arabian Sea summer-monsoon winds and continental aridity: Eolian records from the lithogenic component of deep sea sediments. Paleoceanography 5(2):109–145

    Article  Google Scholar 

  • Clemens SC, Prell WL (2003) A 350,000 year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea. Mar Geol 201(1–3):35–51

    Article  Google Scholar 

  • Clemens SC, Murray DW, Prell WL (1996) Nonstationary phase of the Plio-Pleistocene Asian monsoon. Science 274(5289):943–948

    Article  Google Scholar 

  • Clemens SC, Kuhnt W, LeVay LJ et al (2015) Indian monsoon rainfall. International Ocean Discovery Program Preliminary Report, 353

    Google Scholar 

  • Clift PD, Gaedicke C (2002) Accelerated mass flux to the Arabian Sea during the Middle-late Miocene. Geology 30:207–210

    Article  Google Scholar 

  • Clift P, Lee JI, Clark MK et al (2002) Erosional response of South China to arc rifting and monsoonal strengthening; a record from the South China Sea. Mar Geol 184(3):207–226

    Google Scholar 

  • Clift PD, Hodges KV, Heslop D et al (2008) Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat Geosci 1(12):875–880

    Article  Google Scholar 

  • Coleman ME, Hodges KV (1995) Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east-west extension. Nature 374:49–52

    Article  Google Scholar 

  • Cook ER, Anchukaitis KJ, Buckley BM et al (2010) Asian monsoon failure and megadrought during the last millennium. Science 328:486–489. https://doi.org/10.1126/science.1185188

    Article  Google Scholar 

  • Curry WB, Ostermann DR, Guptha MVS et al (1992) Foraminiferal production and monsoonal upwelling in the Arabian Sea: evidence from sediment traps. Geol Soc London 64:93–106

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16(4):436–468

    Article  Google Scholar 

  • deMenocal PB (1995) Plio-Pleistocene African climate. Science 270:53–59

    Article  Google Scholar 

  • Dettman DL, Kohn MJ, Quade J et al (2001) Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 my. Geology 29(1):31–34

    Article  Google Scholar 

  • Ding YH, Liu YJ (2001) Onset and the evolution of the summer monsoon over the South China Sea during SCSMEX field experiment in 1998. J Meteor Soc Jpn 79:255–276

    Article  Google Scholar 

  • Dixit Y, Tandon SK (2016) Hydroclimatic variability on the Indian subcontinent in the past millennium: review and assessment. Earth Sci Rev 161:1–15

    Article  Google Scholar 

  • Dixit Y, Hodell DA, Petrie CA (2014a) Abrupt weakening of the summer monsoon in Northwest India ~4100 yr ago. Geology 42(4):339–342

    Article  Google Scholar 

  • Dixit Y, Hodell DA, Sinha R et al (2014b) Abrupt weakening of the Indian summer monsoon at 8.2 kyr BP. Earth Planet Sci Lett 391:16–23

    Article  Google Scholar 

  • Dixit Y, Hodell DA, Giesche A et al (2018) Intensified summer monsoon and the urbanization of Indus Civilization in Northwest India. Sci Rep 8(1):4225

    Article  Google Scholar 

  • Dutt S, Gupta AK, Clemens SC et al (2015) Abrupt changes in Indian summer monsoon strength during 33,800 to 5500 years BP. Geophys Res Lett 42(13):5526–5532

    Article  Google Scholar 

  • Dutt S, Gupta AK, Wünnemann B et al (2018) A long arid interlude in the Indian summer monsoon during ∼4,350 to 3,450 cal. yr BP contemporaneous to displacement of the Indus valley civilization. Quat Int 482:83–92

    Article  Google Scholar 

  • Dykoski CA, Edwards RL, Cheng H et al (2005) A high-resolution, absolute dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet Sci Lett 233:71–86

    Article  Google Scholar 

  • East AE, Clift PD, Carter A et al (2015) Fluvial–eolian interactions in sediment routing and sedimentary signal buffering: an example from the Indus basin and Thar desert. J Sediment Res 85(6):715–728

    Article  Google Scholar 

  • Fairchild IJ, Smith CL, Baker A et al (2006) Modification and preservation of environmental signals in speleothems. Earth Sci Rev 75(1–4):105–153

    Article  Google Scholar 

  • Fein JS, Stephens PL (eds) (1987) Monsoons. Wiley, New York

    Google Scholar 

  • Filippelli GM (1997) Intensification of the Asian monsoon and chemical weathering event in the Late Miocene-Early Pliocene: implications for a Late Neogene climate change. Geology 25:27–30

    Article  Google Scholar 

  • Fleitmann D, Burns SJ, Mudelsee M et al (2003) Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300:1737–1739

    Article  Google Scholar 

  • Gadgil S (2003) The Indian monsoon and its variability. Annu Rev Earth Planet Sci 31:429–467

    Article  Google Scholar 

  • Gadgil S (2014) El Niño and the summer monsoon of 2014. Curr Sci 106(10):1335–1336

    Google Scholar 

  • Gibling MR, Tandon SK, Sinha R et al (2005) Discontinuity-bounded alluvial sequences of the southern Gangetic Plains, India: aggradation and degradation in response to monsoonal strength. J Sediment Res 75(3):369–385

    Article  Google Scholar 

  • Gibling MR, Sinha R, Roy NG et al (2008) Quaternary fluvial and eolian deposits on the Belan River, India: paleoclimatic setting of Paleolithic to Neolithic archeological sites over the past 85,000 years. Quat Sci Rev 27(3–4):391–410

    Article  Google Scholar 

  • Giosan L, Clift PD, Macklin MG et al (2012) Fluvial landscapes of the Harappan civilization. Proc Natl Acad Sci U S A 109:E1688–E1694

    Article  Google Scholar 

  • Gordon AL, Susanto RD, Ffield A (1999) Throughflow within Makassar Strait. Geophys Res Lett 26(21):3325–3328

    Article  Google Scholar 

  • Govil P, Naidu PD (2011) Variations of Indian monsoon precipitation during the last 32 kyr reflected in the surface hydrography of the Western Bay of Bengal. Quat Sci Rev 30:3871–3879

    Article  Google Scholar 

  • Gradstein FM, Ogg JG, Schmitz M, Ogg GM (2012) The geologic time scale, vol 1. Elsevier, Amsterdam, p 1176

    Google Scholar 

  • Guo ZT, Ruddiman WF, Hao QZ et al (2002) Onset of Asian desertification by 22Myr ago inferred from loess deposits in China. Nature 416:159–163

    Article  Google Scholar 

  • Gupta AK (2010) Evolution of the Indian monsoon since late Miocene intensification—marine and land proxy records. J Palaeontol Soc India 55(1):1–9

    Google Scholar 

  • Gupta AK, Srinivasan M (1992) Uvigerina proboscidea abundances and paleoceanography of the northern Indian Ocean DSDP Site 214 during the Late Neogene. Mar Micropaleontol 19:355–367

    Article  Google Scholar 

  • Gupta AK, Thomas E (1999) Latest Miocene-Pleistocene productivity and deep-sea ventilation in the Northwestern Indian Ocean (Deep Sea Drilling Project Site 219). Paleoceanography 14(1):62–73

    Article  Google Scholar 

  • Gupta AK, Thomas E (2003) Initiation of Northern Hemisphere Glaciation and strengthening of the northeast Indian Monsoon: Ocean Drilling Program Site 758, eastern equatorial Indian Ocean. Geology 31:47–50

    Article  Google Scholar 

  • Gupta AK, Anderson DM, Overpack JT (2003) Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421:354–357. https://doi.org/10.1038/nature01340

    Article  Google Scholar 

  • Gupta AK, Singh RK, Joseph S et al (2004) Indian Ocean high-productivity event 10–8 Ma: linked to global cooling or to the initiation of the Indian monsoons? Geology 32:753–756

    Article  Google Scholar 

  • Gupta AK, Das M, Anderson DM (2005) Solar influence on the Indian summer monsoon during the Holocene. Geophys Res Lett 32:L17703

    Article  Google Scholar 

  • Gupta AK, Mohan K, Das M et al (2013a) Solar forcing of the Indian summer monsoon variability during the Ållerød period. Sci Rep 3:2753

    Article  Google Scholar 

  • Gupta AK, Singh RK, Verma S (2013b) Deep-sea palaeoceanographic evolution of the eastern Indian Ocean during the late Oligocene–Pleistocene: species diversity trends in benthic foraminifera. Curr Sci 104:904–910

    Google Scholar 

  • Gupta AK, Yuvaraja A, Prakasam M et al (2015) Evolution of the South Asian monsoon wind system since the late Middle Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 438:160–167

    Article  Google Scholar 

  • Hahn DG, Manabe S (1975) The role of mountains in the south Asian monsoon circulation. J Atmos Sci 32:1515–1541

    Article  Google Scholar 

  • Halley E (1686) An historical account of the trade winds and monsoons, observable in the seas between and near the tropics with an attempt to assign the physical cause of the said winds. Philos Trans R Soc Lond 16:153–168

    Google Scholar 

  • Harrison TM, Copeland P, Hall SA et al (1993) Isotopic preservation of Himalayan/Tibetan uplift, denudation, and climatic histories of two molasse deposits. J Geol 101(2):157–175

    Article  Google Scholar 

  • Hastenrath S (1991) Climate dynamics of the tropics. Kluwer Academic, Dordrecht, Netherlands

    Book  Google Scholar 

  • Hedrick KA, Seong YB, Owen LA et al (2011) Towards defining the transition in style and timing of Quaternary glaciation between the monsoon-influenced greater Himalaya and the semi-arid Transhimalaya of Northern India. Quat Int 236:21–33

    Article  Google Scholar 

  • Herbert TD, Peterson LC, Lawrence KT et al (2010) Tropical Ocean temperatures over the past 3.5 million years. Science 328(5985):1530–1534

    Article  Google Scholar 

  • Holbourn A, Kuhnt W, Clemens SC (2013) Middle to late Miocene stepwise climate cooling: evidence from a high-resolution deep water isotope curve spanning 8 million years. Paleoceanography 28(4):688–699

    Article  Google Scholar 

  • Hu D, Clift PD, Böning P et al (2013) Holocene evolution in weathering and erosion patterns in the Pearl River delta. Geochem Geophys Geosyst 14(7):2349–2368

    Article  Google Scholar 

  • Imbrie J, Hay JD, Martinson GD et al (1984) The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. In: Berger A, Imbrie J, Hays H, Kukla G, Saltzman B (eds) Milankovitch and climate: understanding the response to astronomical forcing. D. Reidel, Norwell

    Google Scholar 

  • IPCC, Climate change (2014) Synthesis report: fifth assessment report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change [core writing team, R.K. Pachauri and I.A. Meyer (eds.)]. IPCC, Geneva, Switzerland. 151p

    Google Scholar 

  • Jain M, Tandon SK (2003) Quaternary alluvial stratigraphy and palaeoclimatic reconstruction at the Thar margin. Curr Sci 84(8):1048–1055

    Google Scholar 

  • Jain M, Tandon SK, Bhatt SC (2004) Late Quaternary stratigraphic development in the lower Luni, Mahi and Sabarmati river basins, western India. J Earth Syst Sci 113(3):453–471

    Article  Google Scholar 

  • Jia G, Peng PA, Zhao Q et al (2003) Changes in terrestrial ecosystem since 30 Ma in East Asia: stable isotope evidence from black carbon in the South China Sea. Geology 31(12):1093–1096

    Article  Google Scholar 

  • Jiang H, Ding Z (2008) A 20 Ma pollen record of East-Asian summer monsoon evolution from Guyuan, Ningxia, China. Palaeogeogr Palaeoclimatol Palaeoecol 265(1–2):30–38

    Article  Google Scholar 

  • Juyal N, Chamyal LS, Bhandari S et al (2006) Continental record of the southwest monsoon during the last 130ka: evidence from the southern margin of the Thar Desert, India. Quat Sci Rev 25:2632–2650

    Article  Google Scholar 

  • Juyal N, Sundriyal Y, Rana N et al (2010) Late Quaternary fluvial aggradation and incision in the monsoon-dominated Alaknanda valley, Central Himalaya, Uttrakhand, India. J Quat Sci 25(8):1293–1304

    Article  Google Scholar 

  • Kale VS (2007) Fluvio–sedimentary response of the monsoon-fed Indian rivers to Late Pleistocene–Holocene changes in monsoon strength: reconstruction based on existing 14C dates. Quat Sci Rev 26:1610–1620

    Article  Google Scholar 

  • Kathayat G, Cheng H, Sinha A et al (2016) Indian monsoon variability on millennial-orbital timescales. Sci Rep 6:24374

    Article  Google Scholar 

  • Kathayat G, Cheng H, Sinha A et al (2018) Timing and structure of the 4.2 ka BP event in the Indian Summer Monsoon domain from an annually-resolved Speleothem record from Northeast India. Clim Past Discuss. https://doi.org/10.5194/cp-2018-92

  • Kennett JP (1977) Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography. J Geophys Res 82:3843–3860

    Article  Google Scholar 

  • Kennett JP, Barker PF (1990) Climatic and oceanographic developments in the Weddell Sea, Antarctica, since the latest Cretaceous: an ocean-drilling perspective. Proc ODP Sci Results 113:937–962

    Google Scholar 

  • Krishnamurti TN (1985) Summer monsoon experiment: a review. Mon Weather Rev 113:1590–1626

    Article  Google Scholar 

  • Krishnan R, Kumar V, Sugi M et al (2009) Internal feedbacks from monsoon–midlatitude interactions during droughts in the Indian summer monsoon. J Atmos Sci 66(3):553–578

    Article  Google Scholar 

  • Krishnaswamy J, Vaidyanathan S, Rajagopalan B et al (2014) Non-stationary and non-linear influence of ENSO and Indian Ocean Dipole on the variability of Indian monsoon rainfall and extreme rain events. Clim Dyn 45(1–2):175–184

    Google Scholar 

  • Kroon D, Steens T, Troelstra SR (1991) Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. In: Prell WL, Niitsuma N et al (eds) Proceedings of the Ocean Drilling Program, Scientific Results, vol 117, pp 257–263

    Google Scholar 

  • Kumar A, Srivastava P (2017) The role of climate and tectonics in aggradation and incision of the Indus River in the Ladakh Himalaya during the late Quaternary. Quat Res 87(3):363–385

    Article  Google Scholar 

  • Kumar KK, Rajagopalan B, Hoerling M et al (2006) Unraveling the mystery of Indian monsoon failure during El Nino. Science 314:115–119. https://doi.org/10.1126/science.1131152

    Article  Google Scholar 

  • Kutzbach JE (1983) Monsoon rains of the Late Pleistocene and early Holocene: pattern intensity and possible causes of changes. In: Street-Perrot A et al (eds) Variations in the global water budget, D. Reidel, Dordrecht, Netherlands, pp 371–389

    Chapter  Google Scholar 

  • Kutzbach JE, Prell WL, Ruddiman WF (1993) Sensitivity of Eurasian climate to surface uplift of the Tibetan plateau. J Geol 101(2):177–190

    Article  Google Scholar 

  • Laskar J, Robutel P, Joutel F et al (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428:261–285

    Article  Google Scholar 

  • Lau K-M, Ding YH, Wang JT et al (2000) A report of the field operation and early results of the South China Sea monsoon experiment (SCSMEX). Bull Am Meteor Soc 81:1261–1270

    Article  Google Scholar 

  • Lawver LA, Gahagan LM (1998) Opening of drake passage and its impact on Cenozoic Ocean circulation. Oxf Monogr Biogeogr 39:212–226

    Google Scholar 

  • Lawver LA, Gahagan LM (2003) Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr Palaeoclimatol Palaeoecol 198(1):11–37

    Article  Google Scholar 

  • Lear CH, Elderfield H, Wilson PA (2000) Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287(5451):269–272. https://doi.org/10.1126/science.287.5451.269

    Article  Google Scholar 

  • Leipe C, Demske D, Tarasov PE et al (2014) A Holocene pollen record from the northwestern Himalayan lake Tso Moriri: implications for palaeoclimatic and archaeological research. Quat Int 348:93–112

    Article  Google Scholar 

  • Li C, Yanai M (1996) The onset and interannual variability of the Asian Summer Monsoon in relation to land–sea thermal contrast. J Clim 9:358–375

    Article  Google Scholar 

  • Licht A, Cappelle V, Abels M et al (2014) Asian monsoons in a late Eocene greenhouse world. Nature 513(7519):501–506

    Article  Google Scholar 

  • Maher BA, Hu M (2006) A high-resolution record of Holocene rainfall variations from the western Chinese Loess Plateau: antiphase behaviour of the African/Indian and East Asian summer monsoons. Holocene 16:309–319

    Article  Google Scholar 

  • Managave SR, Sheshshayee MS, Borgaonkar HP et al (2010) Past break-monsoon conditions detectable by high resolution intra-annual δ18O analysis of teak rings. Geophys Res Lett 37(5):L05702

    Article  Google Scholar 

  • Managave SR, Sheshshayee MS, Ramesh R et al (2011) Response of cellulose oxygen isotope values of teak trees in differing monsoon environments to monsoon rainfall. Dendrochronologia 29(2):89–97

    Article  Google Scholar 

  • Managave SR, Shimla P, Borgaonkar HP et al (2017) Regional differences in the carbon isotopic compositions of teak from two monsoonal regimes of India. Dendrochronologia 44:203–210

    Article  Google Scholar 

  • Molnar P, England P, Martinod J (1993) Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev Geophys 31:357–396

    Article  Google Scholar 

  • Officer CB, Drake CL (1983) The Cretaceous-Tertiary transition. Science 219:1383–1390

    Article  Google Scholar 

  • Overpeck JT, Anderson DM, Trumbore S et al (1996) The southwest Indian Monsoon over the last 18000 years. Clim Dyn 12:213–225

    Article  Google Scholar 

  • Pandey DK, Clift PD, Kulhanek DK et al (2016) Expedition 355 summary. In: Pandey DK, Clift PD, Kulhanek DK, The Expedition 355 Scientists, Arabian Sea Monsoon (eds) Proc International Ocean Discovery Program 355: College Station, TX (International Ocean Discovery Program)

    Google Scholar 

  • Peterson LC, Backman J (1990) Late Cenozoic carbonate accumulation and the history of the carbonate compensation depth in the western equatorial Indian Ocean. Proc Ocean Drill Program Sci Results 115:467–507

    Google Scholar 

  • Phadtare NR (2000) Sharp decrease in summer monsoon strength 4000–3500 cal yr B.P. in the central higher Himalaya of India based on pollen evidence from alpine peat. Quat Res 53:122–129

    Article  Google Scholar 

  • Prasad S, Anoop A, Reidel N et al (2014) Prolonged monsoon droughts and links to Indo-Pacific warm pool: a Holocene record from Lonar Lake, Central India. Earth Planet Sci Lett 391:171–182

    Article  Google Scholar 

  • Prell WL (1984) Monsoonal climate of the Arabian Sea during the Late Quaternary: a response to changing solar radiation. In: Beger A, Imbrie J, Hays H (eds) Milankovitch and climate. D. Reidel, Hingham, MA

    Google Scholar 

  • Prell WL, Kutzbach JE (1992) Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature 360:647–653

    Article  Google Scholar 

  • Prell WL, Kutzbach JE (1997) The impact of Tibet-Himalayan elevation on the sensitivity of the monsoon climate system to changes in solar radiation. In: Ruddiman WF (ed) Tectonic uplift and climate change. Plenum Publishing Corporation, New York, pp 171–201

    Chapter  Google Scholar 

  • Prell WL, Murray DW, Clemens SC et al (1992) Evolution and variability of the Indian Ocean summer monsoon: evidence from the western Arabian Sea drilling program. In: The Indian Ocean: a synthesis of results from the Ocean Drilling Program, American Geophysical Union Geophysical Monograph, vol 70. American Geophysical Union, Washington, DC, pp 447–469

    Google Scholar 

  • Quade J, Cerling TE, Bowman JR (1989) Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in the northern Pakistan. Nature 342:163–166

    Article  Google Scholar 

  • Quade J, Cater MLJ, Ojha PT et al (1995) Late Miocene environmental change in Nepal and the northern Indian subcontinent: stable isotopic evidence from paleosols. Geol Soc Am Bull 107:1381–1397

    Article  Google Scholar 

  • Rajeevan MS, Gadgil S, Bhate J (2010) Active and break spells of the Indian summer monsoon. J Earth Syst Sci 119:229–248

    Article  Google Scholar 

  • Ramesh R, Bhattacharya SK, Gopalan K (1985) Dendro-chronological implications of isotope coherence in trees from Kashmir Vallev, India. Nature 317:802–804

    Article  Google Scholar 

  • Ramesh R, Bhattacharya SK, Pant GB (1989) Climatic significance of δD variations in a tropical tree species from India. Nature 337(6203):149–150

    Article  Google Scholar 

  • Ramstein G, Fluteau F, Besse J et al (1997) Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature 386:788–795

    Article  Google Scholar 

  • Rawat S, Gupta AK, Sangode SJ et al (2015) Late Pleistocene–Holocene vegetation and Indian summer monsoon record from the Lahaul, Northwest Himalaya, India. Quat Sci Rev 114:167–181

    Article  Google Scholar 

  • Ray Y, Srivastava P (2010) Widespread aggradation in the mountainous catchment of the Alaknanda–Ganga River System: timescales and implications to Hinterland–foreland relationships. Quat Sci Rev 29(17–18):2238–2260

    Article  Google Scholar 

  • Raymo ME, Ruddiman WF (1992) Tectonic forcing of late Cenozoic climate. Nature 359:117–122

    Article  Google Scholar 

  • Rea DK (1992) Delivery of Himalayan sediment to northern Indian Ocean and its relation to global climate, sea level, uplift and seawater strontium. In: Duncan RA (ed) Synthesis of results from scientific drilling in the Indian Ocean, Geophys Monogr Ser, vol 70. AGU, Washington, pp 387–402

    Google Scholar 

  • Rowley DB, Currie BS (2006) Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, Central Tibet. Nature 439(7077):677–681

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN et al (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Sano M, Ramesh R, Sheshshayee MS et al (2012) Increasing aridity over the past 223 years in the Nepal Himalaya inferred from a tree-ring δ18O chronology. Holocene 22:809–817

    Article  Google Scholar 

  • Sano M, Tshering P, Komori J et al (2013) May–September precipitation in the Bhutan Himalaya since 1743 as reconstructed from tree ring cellulose δ18O. J Geophys Res 118(15):8399–8410

    Google Scholar 

  • Sanyal P, Bhattacharya SK, Kumar R et al (2004) Mio–Pliocene monsoonal record from Himalayan foreland basin (Indian Siwalik) and its relation to vegetational change. Palaeogeogr Palaeoclimatol Palaeoecol 205(1):23–41

    Article  Google Scholar 

  • Sanyal P, Sarkar A, Bhattacharya SK et al (2010) Intensification of monsoon, microclimate and asynchronous C4 appearance: isotopic evidence from the Indian Siwalik sediments. Palaeogeogr Palaeoclimatol Palaeoecol 296:165–173

    Article  Google Scholar 

  • Saraswat R, Lea DW, Nigam R et al (2013) Deglaciation in the tropical Indian Ocean driven by interplay between the regional monsoon and global teleconnections. Earth Planet Sci Lett 375:166–175

    Article  Google Scholar 

  • Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat Geosci 4(3):156

    Article  Google Scholar 

  • Scherler D, Bookhagen B, Wulf H, Preusser F, Strecker MR (2015) Increased late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India. Earth Planet Sci Lett 428:255–266

    Article  Google Scholar 

  • Shah SK, Bhattacharyya A, Chaudhary V (2007) Reconstruction of June–September precipitation based on tree-ring data of teak (Tectonagrandis L.) from Hoshangabad, Madhya Pradesh, India. Dendrochronologia 25(1):57–64. https://doi.org/10.1016/j.dendro.2007.02.001

    Article  Google Scholar 

  • Shewale MP, Kumar S (2005) Climatological features of drought incidences in India. Meteorological Monograph (Climatology 21/2005). National Climate Centre, India Meteorological Department, Pune

    Google Scholar 

  • Shi F, Li J, Wilson RJS (2014) A tree-ring reconstruction of the South Asian summer monsoon index over the past millennium. Sci Rep 4:6739. https://doi.org/10.1038/srep06739

    Article  Google Scholar 

  • Shukla A, Mehrotra RC, Spicer RA et al (2014) Cool equatorial terrestrial temperatures and the South Asian monsoon in the Early Eocene: evidence from the Gurha Mine, Rajasthan, India. Palaeogeogr Palaeoclimatol Palaeoecol 412:187–198

    Article  Google Scholar 

  • Sikka DR (1980) Some aspects of the large scale fluctuations of summer monsoon rainfall over India in relation to fluctuations in the planetary and regional scale circulation parameters. Proc Ind Acad Sci (Earth Planet Sci) 89:179–195

    Google Scholar 

  • Singh RK, Gupta AK (2004) Late Oligocene-Miocene paleoceanographic evolution of the southeastern Indian Ocean: evidence from deep-sea benthic foraminifera (ODP Site 757). Mar Micropaleontol 51:153–170

    Article  Google Scholar 

  • Singh RK, Gupta AK (2005) Systematic decline in benthic foraminiferal species diversity linked to productivity increases over the last 26 Ma in the Indian Ocean. J Foraminiferal Res 35(3):219–227

    Article  Google Scholar 

  • Singh RK, Gupta AK (2010) Constriction of the Indonesian Seaway shutdown intermediate to deep water flow from the Pacific to the Indian Ocean about 3 Ma. Episodes 33:74–82

    Article  Google Scholar 

  • Singh AD, Mohan R (2007) Planktic foraminiferal evidence for Neogene deep sea hiatuses in the Northern Indian Ocean. Micropaleontol Appl Strat Paleoc:315–330

    Google Scholar 

  • Singh RK, Gupta AK, Das M (2012) Paleoceanographic significance of deep-sea benthic foraminiferal species diversity at southeastern Indian Ocean Hole 752A during the Neogene. Palaeogeogr Palaeoclimatol Palaeoecol 361:94–103

    Article  Google Scholar 

  • Singh DS, Gupta AK, Sangode SJ et al (2015) Multiproxy record of monsoon variability from the Ganga Plain during 400–1200 AD. Quat Int 12(371):157–163

    Article  Google Scholar 

  • Singh A, Thomsen KJ, Sinha R et al (2017) Counter-intuitive influence of Himalayan river morphodynamics on Indus Civilisation urban settlements. Nat Commun 8(1):1617

    Article  Google Scholar 

  • Sinha A, Stott L, Berkelhammer M et al (2011) A global context for megadroughts in monsoon Asia during the past millennium. Quat Sci Rev 30:47–62

    Article  Google Scholar 

  • Sinha A, Kathayat G, Cheng H et al (2015) Trends and oscillations in the Indian summer monsoon rainfall over the last two millennia. Nat Commun 6:6309

    Article  Google Scholar 

  • Smart CW, King SC, Gooday A et al (1994) A benthic foraminiferal proxy of pulsed organic matter paleofluxes. Mar Micropaleontol 23(2):89–99

    Article  Google Scholar 

  • Sontakke NA, Singh N, Singh HN (2008) Instrumental period rainfall series of the Indian region (1813–2005): revised reconstruction, update and analysis. Holocene 18:1055–1066

    Article  Google Scholar 

  • Spicer RA, Harris NB, Widdowson M et al (2003) Constant elevation of southern Tibet over the past 15 million years. Nature 421(6923):622

    Article  Google Scholar 

  • Srivastava G, Spicer RA, Spicer TEV et al (2012) Megaflora and palaeoclimate of a Late Oligocene tropical delta, Makum Coalfield, Assam: evidence for the early development of the South Asia Monsoon. Palaeogeogr Palaeoclimatol Palaeoecol 342:130–142. https://doi.org/10.1016/j.palaeo.2012.05.002

    Article  Google Scholar 

  • Srivastava P, Agnihotri R, Sharma D et al (2017) 8000-year monsoonal record from Himalaya revealing reinforcement of tropical and global climate systems since mid-Holocene. Sci Rep 7(1):14515

    Article  Google Scholar 

  • Stuiver M, Grootes PM (2000) GISP2 oxygen isotope ratios. Quat Res 53:277–283

    Article  Google Scholar 

  • Sukumar R, Ramesh R, Pant RK et al (1993) A δ13C record of late Quaternary climate change from tropical peats in southern India. Nature 364:703–706

    Article  Google Scholar 

  • Sun X, Wang P (2005) How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol 222(3–4):181–222

    Article  Google Scholar 

  • Tada R, Murray RW, Zarikian CA et al (2015) Site U1427. In: Proc. IODP, vol 346. IODP, College Station, TX, p 2

    Google Scholar 

  • Thiede RC, Bookhagen B, Arrowsmith JR (2004) Climatic control on rapid exhumation along the southern Himalayan Front. Earth Planet Sci Lett 222:791–806

    Article  Google Scholar 

  • Thomas JV, Kar A, Kailath AJ et al (1999) Late Pleistocene-Holocene Aeolian accumulation in Thar Desert. Z Geomorphol 116:181–194

    Google Scholar 

  • Thompson LG, Yao T, Mosley-Thompson E et al (2000) A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Science 289:1916–1919

    Article  Google Scholar 

  • Treydte KS, Schleser GH, Helle G et al (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440:1179–1182

    Article  Google Scholar 

  • Verma S, Gupta AK, Singh RK (2013) Variations in deep-sea benthic foraminifera at ODP Hole 756B, southeastern Indian Ocean: evidence for changes in deep ocean circulation. Palaeogeogr Palaeoclimatol Palaeoecol 15(376):172–183

    Article  Google Scholar 

  • Wan S, Li A, Clift PD et al (2006) Development of the East Asian summer monsoon: evidence from the sediment record in the South China Sea since 8.5 Ma. Palaeogeogr Palaeoclimatol Palaeoecol 241(1):139–159

    Article  Google Scholar 

  • Wang P (1990) Neogene stratigraphy and paleoenvironments of China. Palaeogeogr Palaeoclimatol Palaeoecol 77(3–4):315–334

    Article  Google Scholar 

  • Wang Y, Cheng H, Edwards RL et al (2005a) The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308:854–857

    Article  Google Scholar 

  • Wang P, Clemens S, Beaufort L et al (2005b) Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quat Sci Rev 24(5):595–629

    Article  Google Scholar 

  • Wanner H, Beer J, Buetikofer J et al (2008) Mid-to Late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828

    Article  Google Scholar 

  • Webster PJ, Magana VO, Palmer TN et al (1998) Monsoons: processes, predictability, and the prospects for prediction, in the TOGA decade. J Geophys Res 103:14451–14510

    Article  Google Scholar 

  • Weissert HJ, McKenzie JA, Wright RC et al (1984) Paleoclimatic record of the Pliocene at deep-sea drilling project Site-519, Site-521, Site-522, and Site-523 (Central South-Atlantic). Initial Rep Deep Sea Drill Proj 73:701–715

    Google Scholar 

  • Yadav RR, Gupta AK, Kotlia BS et al (2017) Recent wetting and glacier expansion in the northwest Himalaya and Karakoram. Sci Rep 7:6139

    Article  Google Scholar 

  • Yadava AK, Bräuning A, Singh J et al (2016) Boreal spring precipitation variability in the cold arid western Himalaya during the last millennium, regional linkages, and socio-economic implications. Quat Sci Rev 144:28–43

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L et al (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292(5517):686–693

    Article  Google Scholar 

  • Zhuang G, Pagani M, Zhang YG (2017) Monsoonal upwelling in the western Arabian Sea since the middle Miocene. Geology 45(7):655–658

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank the Indian Institute of Technology Kharagpur and Wadia Institute of Himalayan Geology, Dehradun, for providing facilities to carry out this work. A.K.G. thanks DST, New Delhi, for grants under J.C. Bose fellowship. P.D.C. thanks the Charles T. McCord Chair in Petroleum Geology at LSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, A.K., Prakasam, M., Dutt, S., Clift, P.D., Yadav, R.R. (2020). Evolution and Development of the Indian Monsoon. In: Gupta, N., Tandon, S. (eds) Geodynamics of the Indian Plate. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-030-15989-4_14

Download citation

Publish with us

Policies and ethics