Skip to main content

Parametric Study of Lumbar Belts in the Case of Low Back Pain: Effect of Patients’ Specific Characteristics

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine

Abstract

Objective: A numerical 3D model of the human trunk was developed to study the biomechanical effects of lumbar belts used to treat low back pain.

Methods: This model was taken from the trunk radiographies of a person and simplified so as to make a parametric study by various morphological parameters of the patient, characteristic parameters of the lumbar belt and mechanical parameters of body and finally to determine the parameters influencing the effects of low back pain when wearing the lumbar belt. The loading of lumbar belt is modelled by Laplace’s law. These results were compared with clinical study.

Results: All the results of this parametric study showed that the choice of belt is very important depending on the patient’s morphology. Surprisingly, the therapeutic treatment is not influenced by the mechanical characteristics of the body structures except the mechanical properties of intervertebral discs.

Discussion: The numerical model can serve as a basis for more in-depth studies concerning the analysis of efficiency of lumbar belts in low back pain. In order to study the impact of the belt’s architecture, the pressure applied to the trunk modelled by Laplace’s law could be improved. This model could also be used as the basis for a study of the impact of the belt over a period of wearing time. Indeed, the clinical study shows that movement has an important impact on the distribution of pressure applied by the belt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stucki RF, Waldburger M (2001) Approche multidisciplinaire de la lombalgie commune subaiguë et chronique: expérience suisse romande. Rev Rhum 68(2):178–184

    Google Scholar 

  2. Calmels P, Queneau P, Hamonet C et al (2009) Effectiveness of a lumbar belt in subacute low back pain: an open, multicentric, and randomized clinical study. Spine 34(3):215–220

    Google Scholar 

  3. Axelsson P, Johnsson R, Strömqvist B (1992) Effect of lumbar orthosis on intervertebral mobility. A roentgen stereophotogrammetric analysis. Spine 17(6):678–681

    Google Scholar 

  4. Calmels P, Fayolle-Minon I (1996) An update on orthotic devices for the lumbar spine based on a review of the literature. Rev Rhum 63(4):285–291

    Google Scholar 

  5. Fidler MW, Plasmans CM (1983) The effect of four types of support on the segmental mobility of the lumbosacral spine. J Bone Joint Surg 65(7):943–947

    Google Scholar 

  6. Andersson BJ, Ortengren R (1974) Lumbar disc pressure and myoelectric back muscle activity during sitting. 3. Studies on a wheelchair. Scand J Rehabil Med 6(3):122–127

    Google Scholar 

  7. McGill SM, Norman RW, Sharratt MT (1990) The effect of an abdominal belt on trunk muscle activity and intra-abdominal pressure during squat lifts. Ergonomics 33(2):147–160

    Google Scholar 

  8. Nachemson A, Morris JM (1964) In vivo measurements of intradiscal pressure. J Bone Joint Surg 46(5):1077–1092

    Google Scholar 

  9. Cholewicki J, Shah KR, McGill KC (2006) The effects of a 3-week use of lumbosacral orthoses on proprioception in the lumbar spine. J Orthop Sports Phys Ther 36(4):225–231

    Google Scholar 

  10. Dalichau S, Scheele K (2000) Auswirkungen elastischer lumbal-stützgurte auf den effect eines muskeltrainingsprogrammes für patienten mit chronischen rückenschmerzen. Z Orthop 138(1):8–16

    Google Scholar 

  11. Thoumie P, Drape JL, Aymard C et al (1998) Effects of a lumbar support on spine posture and motion assessed by electrogoniometer and continuous recording. Clin Biomech 13(1):18–26

    Google Scholar 

  12. Fayolle-Minon I, Calmels P (2008) Effect of wearing a lumbar orthosis on trunk muscles: study of the muscle strength after 21days of use on healthy subjects. Joint Bone Spine 75(1):58–63

    Google Scholar 

  13. Kawaguchi Y, Gejo R, Kanamori M et al (2002) Quantitative analysis of the effect of lumbar orthosis on trunk muscle strength and muscle activity in normal subjects. J Orthop Sci 7(4):483–489

    Google Scholar 

  14. Reyna JR, Leggett SH, Kenney K et al (1995) The effect of lumbar belts on isolated lumbar muscle. Strength and dynamic capacity. Spine 20(1):68–73

    Google Scholar 

  15. Warren LP, Appling S, Oladehin A, Griffin J et al (2001) Effect of soft lumbar support belt on abdominal oblique muscle activity in nonimpaired adults during squat lifting. J Orthop Sports Phys Ther 31(6):316–323

    Google Scholar 

  16. Holmström E, Moritz U (1992) Effects of lumbar belts on trunk muscle strength and endurance: a follow-up study of construction workers. J Spinal Disord 5(3):260–266

    Google Scholar 

  17. Million R, Nilsen KH, Jayson MI et al (1981) Evaluation of low back pain and assessment of lumbar corsets with and without back supports. Ann Rheum Dis 40(5):449–454

    Google Scholar 

  18. Valle-Jones JC, Walsh H, O’Hara J et al (1992) Controlled trial of a back support (‘Lumbotrain’) in patients with non-specific low back pain. Curr Med Res Opin 12(9):604–613

    Google Scholar 

  19. Willner S (1985) Effect of a rigid brace on back pain. Acta Orthop Scand 56(1):40–42

    Google Scholar 

  20. Carrier J, Aubin CE, Villemure I, Labelle H et al (2004) Biomechanical modelling of growth modulation following rib shortening or lengthening in adolescent idiopathic scoliosis. Med Biol Eng Comput 42(4):541–548

    Google Scholar 

  21. Nagasao T, Noguchi M, Miyamoto J et al (2010) Dynamic effects of the Nuss procedure on the spine in asymmetric pectus excavatum. J Thorac Cardiovasc Surg 140(6):1294–1299

    Google Scholar 

  22. Pankoke S, Hofmann J, Wölfel HP (2001) Determination of vibration-related spinal loads by numerical simulation. Clin Biomech 16:S45–S56

    Google Scholar 

  23. Huynh AM, Aubin CE, Mathieu PA et al (2007) Simulation of progressive spinal deformities in Duchenne muscular dystrophy using a biomechanical model integrating muscles and vertebral growth modulation. Clin Biomech 22(4):392–399

    Google Scholar 

  24. Lafortune P, Aubin CE, Boulanger H et al (2007) Biomechanical simulations of the scoliotic deformation process in the pinealectomized chicken: a preliminary study. Scoliosis 2(1):16

    Google Scholar 

  25. Villemure I, Aubin CE, Dansereau J et al (2004) Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses. Eur Spine J 13(1):83–90

    Google Scholar 

  26. Arjmand N, Plamondon A, Shirazi-Adl A et al (2012) Predictive equations for lumbar spine loads in load-dependent asymmetric one-and two-handed lifting activities. Clin Biomech 27(6):537–544

    Google Scholar 

  27. Bazrgari B, Nussbaum MA, Madigan ML et al (2011) Soft tissue wobbling affects trunk dynamic response in sudden perturbations. J Biomech 44(3):547–551

    Google Scholar 

  28. Clin J, Aubin CE, Labelle H (2007) Virtual prototyping of a brace design for the correction of scoliotic deformities. Med Biol Eng Comput 45(5):467–473

    Google Scholar 

  29. Chagnon A, Aubin CE, Villemure I (2010) Biomechanical influence of disk properties on the load transfer of healthy and degenerated disks using a poroelastic finite element model. J Biomech Eng 132:111006. https://doi.org/10.1115/1.4002550

    Article  Google Scholar 

  30. Dubuis L, Avril S, Debayle J et al (2012) Patient-specific numerical model of soft tissues in the compressed leg: application to six subjects. Comput Methods Biomech Biomed Engin 15(S1):44–45

    Google Scholar 

  31. Bonnaire R (2015) Caractérisation mécanique des orthèses: application aux ceintures de soutien lombaire dans le cadre de la lombalgie. PhD Thesis, Ecole des Mines de Saint-Etienne, France

    Google Scholar 

  32. Bonnaire R, Verhaeghe M, Molimard J et al (2014) Characterization of a pressure measuring system for the evaluation of medical devices. J Eng Med 228:1264–1274

    Google Scholar 

  33. Goel VK, Kong W, Han JS et al (1993) A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles. Spine 18(11):1531–1541

    Google Scholar 

  34. Périé D, Aubin CE, Lacroix M et al (2004) Biomechanical modelling of orthotic treatment of the scoliotic spine including a detailed representation of the brace-torso interface. Med Biol Eng Comput 42(3):339–344

    Google Scholar 

  35. Sylvestre PL, Villemure I, Aubin CE (2007) Finite element modeling of the growth plate in a detailed spine model. Med Biol Eng Comput 45(10):977–988

    Google Scholar 

  36. Wagnac E, Arnoux PJ, Garo A et al (2012) Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. Med Biol Eng Comput 50(9):903–915

    Google Scholar 

  37. Dreischarf M, Rohlmann A, Bergmann G et al (2011) Optimised loads for the simulation of axial rotation in the lumbar spine. J Biomech 44(12):2323–2327

    Google Scholar 

  38. Dreischarf M, Rohlmann A, Bergmann G et al (2010) A non-optimized follower load path may cause considerable intervertebral rotations. J Biomech 43(13):2625–2628

    Google Scholar 

  39. Munoz F (2014) Évaluation biomécanique des orthèses lombaires - application à l’orthèse Lordactiv®. PhD Thesis, Univ Jean Monnet, France

    Google Scholar 

  40. Pierrat B, Molimard J, Navarro L et al (2015) Evaluation of the mechanical efficiency of knee braces based on computational modelling. Comput Methods Biomech Biomed Engin 18(6):646–661

    Google Scholar 

  41. Malik K, Joseph NJ (2007) Intervertebral disc a source of pain? low back pain: problems and future directions. Middle East J Anaesthesiol 19(3):683–692

    Google Scholar 

  42. Poiraudeau S, Lefevre Colau MM, Fayad F et al (2004) Lombalgies. EMC-Rhumatol-Orthop 1(4):295–319

    Google Scholar 

  43. Preuss R, Fung J (2005) Can acute low back pain result from segmental spinal buckling during sub-maximal activities? Man Ther 10(1):14–20

    Google Scholar 

  44. Turgut AT, Sönmez I, Çakıt BD et al (2008) Pineal gland calcification, lumbar intervertebral disc degeneration and abdominal aorta calcifying atherosclerosis correlate in low back pain subjects: a cross-sectional observational CT study. Pathophysiology 15(1):31–39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo-Suck Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonnaire, R., Han, WS., Calmels, P., Convert, R., Molimard, J. (2020). Parametric Study of Lumbar Belts in the Case of Low Back Pain: Effect of Patients’ Specific Characteristics. In: Nash, M., Nielsen, P., Wittek, A., Miller, K., Joldes, G. (eds) Computational Biomechanics for Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-15923-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15923-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15922-1

  • Online ISBN: 978-3-030-15923-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics