Skip to main content

Time Constant and Model-Free Signal Prediction in Communication Channel of Teleoperation System

  • Conference paper
  • First Online:
Mechatronics 2017 - Ideas for Industrial Applications (MECHATRONICS 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 934))

Included in the following conference series:

  • 721 Accesses

Abstract

In the paper a sensor-less control scheme for a bilateral teleoperation system with a force-feedback based on a model-free prediction in the communication channel by prediction blocks was presented. The prediction block was designed to minimize the effect of the transport delay in the communication channel of bilateral teleoperation system. The single prediction block has been a phase shifter with a specific behavior. The specific behavior of the prediction block is a strongly linear phase diagram in a useful frequency spectrum which allows the system to predict the manipulator motion and the force with a close to constant time shift. Another important feature is a gain of the block which is close to a unity when system operates in the useful frequency spectrum. The solution is an alternative to complex and mostly non-linear methods presented in the literature. The effectiveness of the method has been verified on the hydraulic manipulator test stand under control of many operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arcara, P., Melchiorri, C., Stramigioli, S.: Intrinsically passive control in bilateral teleoperation mimo systems. In: 2001 European Control Conference (ECC) (2001)

    Google Scholar 

  2. Atashzar, S.F., Polushin, I.G., Patel, R.V.: Projection-based force reflection algorithms for teleoperated rehabilitation therapy. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)

    Google Scholar 

  3. Chang, M.-K.: An adaptive self-organizing fuzzy sliding mode controller for a 2-DOF rehabilitation robot actuated by pneumatic muscle actuators. Control Eng. Pract. 18(1), 13–22 (2010)

    Article  Google Scholar 

  4. Ferrell, W.R.: Remote manipulation with transmission delay. IEEE Trans. Hum. Fact. Electron. HFE-6(1), 24–32 (1965)

    Article  Google Scholar 

  5. Ferrell, W.R.: Delayed force feedback. Hum. Fact.: J. Hum. Fact. Ergon. Soc. 8(5), 449–455 (1966)

    Article  Google Scholar 

  6. Ferrell, W.R., Sheridan, T.B.: Supervisory control of remote manipulation. IEEE Spectr. 4(10), 81–88 (1967)

    Article  Google Scholar 

  7. Ge, X., et al.: Analysis of a model-free predictor for delay compensation in networked systems. In: Time Delay Systems, pp. 201–215. Springer, Heidelberg (2017)

    Google Scholar 

  8. Hastrudi-Zaad, K., Salcudean, S.E.: On the use of local force feedback for transparent teleoperation. In: Proceedings of 1999 IEEE International Conference on Robotics and Automation (1999)

    Google Scholar 

  9. Hulin, T., Albu-Schäffer, A., Hirzinger, G.: Passivity and stability boundaries for haptic systems with time delay. IEEE Trans. Control Syst. Technol. 22(4), 1297–1309 (2014)

    Article  Google Scholar 

  10. Kaya, I.: Obtaining controller parameters for a new PI-PD Smith predictor using autotuning. J. Process Control 13(5), 465–472 (2003)

    Article  Google Scholar 

  11. Kim, W.S.: Developments of new force reflecting control schemes and an application to a teleoperation training simulator. In: Proceedings of 1992 IEEE International Conference on Robotics and Automation (1992)

    Google Scholar 

  12. Kim, W.S., Hannaford, B., Fejczy, A.K.: Force-reflection and shared compliant control in operating telemanipulators with time delay. IEEE Trans. Robot. Autom. 8(2), 176–185 (1992)

    Article  Google Scholar 

  13. Lawrence, D.A.: Stability and transparency in bilateral teleoperation. IEEE Trans. Robot. Autom. 9(5), 624–637 (1993)

    Article  Google Scholar 

  14. Lichiardopol, S., Van De Wouw, N., Nijmeijer, H.: Control scheme for human-robot co-manipulation of uncertain, time-varying loads. In: 2009 American Control Conference (2009)

    Google Scholar 

  15. Miądlicki, K., Pajor, M.: Overview of user interfaces used in load lifting devices. Int. J. Sci. Eng. Res. 6(9), 1215–1220 (2015)

    Google Scholar 

  16. Miądlicki, K., Pajor, M.: Real-time gesture control of a CNC machine tool with the use Microsoft Kinect sensor. Int. J. Sci. Eng. Res. 6(9), 538–543 (2015)

    Google Scholar 

  17. Moreau, R., et al.: Sliding-mode bilateral teleoperation control design for master–slave pneumatic servo systems. Control Eng. Pract. 20(6), 584–597 (2012)

    Article  Google Scholar 

  18. Nguyen, T., et al.: Accurate sliding-mode control of pneumatic systems using low-cost solenoid valves. IEEE/ASME Trans. Mechatron. 12(2), 216–219 (2007)

    Article  Google Scholar 

  19. Niemeyer, G., Slotine, J.J.E.: Stable adaptive teleoperation. IEEE J. Ocean. Eng. 16(1), 152–162 (1991)

    Article  Google Scholar 

  20. Pajor, M., Miądlicki, K., Saków, M.: Kinect sensor implementation in FANUC robot manipulation. Arch. Mech. Technol. Autom. 34(3), 35–44 (2014)

    Google Scholar 

  21. Polushin, I.G., Takhmar, A., Patel, R.V.: Projection-based force-reflection algorithms with frequency separation for bilateral teleoperation. IEEE/ASME Trans. Mechatron. 20(1), 143–154 (2015)

    Article  Google Scholar 

  22. Rakotondrabe, M., et al.: Simultaneous displacement/force self-sensing in piezoelectric actuators and applications to robust control. IEEE/ASME Trans. Mechatronics. 20(2), 519–531 (2015)

    Article  Google Scholar 

  23. Saków, M., Miądlicki, K., Parus, A.: Self-sensing teleoperation system based on 1-DoF pneumatic manipulator. J. Autom. Mob. Robot. Intell. Syst. 11(1), 64–76 (2017)

    Google Scholar 

  24. Saków, M., Pajor, M., Parus, A.: Estymacja siły oddziaływania środowiska na układ zdalnie sterowany ze sprzężeniem siłowym zwrotnym o kinematyce kończyny górnej. Modelowanie Inzynierskie 58, 113–122 (2016)

    Google Scholar 

  25. Saków, M., Parus, A.: Sensorless control scheme for teleoperation with force-feedback, based on a hydraulic servo-mechanism, theory and experiment. Meas. Autom. Monit. 62(12) (2016)

    Google Scholar 

  26. Sheridan, T.B.: Space teleoperation through time delay: review and prognosis. IEEE Trans. Robot. Autom. 9(5), 592–606 (1993)

    Article  Google Scholar 

  27. Sheridan, T.B., Ferrell, W.R.: Human control of remote computer-manipulators. In: Proceedings of the 1st International Joint Conference on Artificial Intelligence, pp. 483–494. Morgan Kaufmann Publishers Inc., Washington, DC 1969

    Google Scholar 

  28. Stuart, K.D., Majewski, M.: Intelligent opinion mining and sentiment analysis using artificial neural networks. In: International Conference on Neural Information Processing. Springer, Heidelberg (2015)

    Google Scholar 

  29. Stuart, K.D., Majewski, M., Trelis, A.B.: Intelligent semantic-based system for corpus analysis through hybrid probabilistic neural networks. In: International Symposium on Neural Networks. Springer, Heidelberg (2011)

    Google Scholar 

  30. Tadano, K., Kawashima, K.: Development of 4-DOFs forceps with force sensing using pneumatic servo system. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006 (2006)

    Google Scholar 

  31. Tavakoli, M., Patel, R.V., Moallem, M.: A force reflective master-slave system for minimally invasive surgery. In: Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (2003)

    Google Scholar 

  32. Tomovic, R., Boni, G.: An adaptive artificial hand. IRE Trans. Autom. Control 7(3), 3–10 (1962)

    Article  Google Scholar 

  33. Wen-Hong, Z., Salcudean, S.E.: Stability guaranteed teleoperation: an adaptive motion/force control approach. IEEE Trans. Autom. Control 45(11), 1951–1969 (2000)

    Article  MathSciNet  Google Scholar 

  34. Zhai, D.H., Xia, Y.: Adaptive control for teleoperation system with varying time delays and input saturation constraints. IEEE Trans. Industr. Electron. 63(11), 6921–6929 (2016)

    Article  Google Scholar 

  35. Zhai, D.H., Xia, Y.: Adaptive control of semi-autonomous teleoperation system with asymmetric time-varying delays and input uncertainties. IEEE Trans. Cybern. 47, 3621–3633 (2017)

    Article  Google Scholar 

  36. Zhou, M., Ben-Tzvi, P.: RML glove - an exoskeleton glove mechanism with haptics feedback. IEEE/ASME Trans. Mechatron. 20(2), 641–652 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

The work was carried out as part of the PBS3/A6/28/2015 project, “The use of augmented reality, interactive voice systems and operator interface to control a crane”, financed by NCBiR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Saków .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saków, M., Parus, A., Pajor, M., Miądlicki, K. (2019). Time Constant and Model-Free Signal Prediction in Communication Channel of Teleoperation System. In: Świder, J., Kciuk, S., Trojnacki, M. (eds) Mechatronics 2017 - Ideas for Industrial Applications. MECHATRONICS 2017. Advances in Intelligent Systems and Computing, vol 934. Springer, Cham. https://doi.org/10.1007/978-3-030-15857-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15857-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15856-9

  • Online ISBN: 978-3-030-15857-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics