Skip to main content

A Comparison of Type Theory with Set Theory

  • Chapter
  • First Online:
Reflections on the Foundations of Mathematics

Part of the book series: Synthese Library ((SYLI,volume 407))

Abstract

This paper discusses some of the ways in which Martin-Löf type theory differs from set theory. The discussion concentrates on conceptual, rather than technical, differences. It revolves around four topics: sets versus types; syntax; functions; and identity. The difference between sets and types is spelt out as the difference between unified pluralities and kinds, or sorts. A detailed comparison is then offered of the syntax of the two languages. Emphasis is put on the distinction between proposition and judgement, drawn by type theory, but not by set theory. Unlike set theory, type theory treats the notion of function as primitive. It is shown that certain inconveniences pertaining to function application that afflicts the set-theoretical account of functions are thus avoided. Finally, the distinction, drawn in type theory, between judgemental and propositional identity is discussed. It is argued that the criterion of identity for a domain cannot be formulated in terms of propositional identity. It follows that the axiom of extensionality cannot be taken as a statement of the criterion of identity for sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cantor (1882, pp. 114–115): “Eine Mannichfaltigkeit (ein Inbegriff, eine Menge) von Elementen, die irgend welcher Begriffssphäre angehören, nenne ich wohldefinirt, wenn auf Grund ihrer Definition und in Folge des logischen Princips vom ausgeschlossenen Dritten es als intern bestimmt angesehen werden muss, sowohl ob irgend ein derselben Begriffssphäre angehöriges Object zu der gedachten Mannichfaltigkeit als Element gehört oder nicht, wie auch ob zwei zur Menge gehörige Objecte, trotz formaler Unterschiede in der Art des Gegebenseins einander gleich sind oder nicht.”

  2. 2.

    Cantor (1883, p. 587): “Unter einer Mannichfaltigkeit oder Menge verstehe ich nämlich allgemein jedes Viele, welches sich als Eines denken lässt…”

  3. 3.

    For these claims and arguments see Kirk et al. (1983, esp. pp. 249–251, 266, 358). For a general overview of the topics of plurality and unity in ancient and mediaeval philosophy, see Meier-Oeser (2001).

  4. 4.

    See Cantor (1895, p. 482) and the discussion in Hallett (1984, pp. 119–141).

  5. 5.

    The relation is closer still if the simple hierarchy of types is taken to be a hierarchy of classes; see Quine (1956) and Linnebo and Rayo (2012).

  6. 6.

    The idea of a many-sorted language is implicit in Hilbert (1899). An early, perhaps the first, use of the term “many-sorted logic” (or, its German cousin), as well as a definition of the thing itself, can be found in Schmidt (1938). Schmidt (p. 485) emphasizes that he uses “sort” instead of “type” or “kind” so as to avoid the association of levels characteristic of type theory.

  7. 7.

    Cf. Liddell & Scott’s Greek–English Lexicon, s.v. “τúπως”.

  8. 8.

    Cf. Oxford English Dictionary, s.v. “type”.

  9. 9.

    The use of the term “set” for types of individuals, perhaps inspired by Bishop (1967, p. 13), goes back to Martin-Löf (1984). “Domain” was used for the same purpose in Diller and Troelstra (1984). One reason why this, rather natural, terminology was not taken up by Martin-Löf himself seems to have been the use of the term “domain” for a very different notion in Dana Scott’s so-called theory of domains (e.g. Scott 1982).

  10. 10.

    For a general discussion of dependent types, see Aspinall and Hofmann (2005).

  11. 11.

    In the reconstruction of Frege’s type hierarchy given by Dummett (1973, pp. 44–45) there is a separate type of propositions.

  12. 12.

    See Howard (1980), Martin-Löf (1984, pp. 5–6, 11–13), de Bruijn (1995), or Wadler (2015).

  13. 13.

    In homotopy type theory there is also a more specific conception of propositions. A so-called mere proposition is a type of individuals that, intuitively, has at most one element; see The Univalent Foundations Program (2013, ch. 3).

  14. 14.

    Systematic employment of this technique stems from Schönfinkel (1924, § 2), but the idea is present already in Frege (1893, § 36).

  15. 15.

    For the distinction between function and operator, see Church (1956, §§ 3, 6).

  16. 16.

    Dependent function types introduce a further variable-binding operator; thus with dependent function types present, there are two variable-binding operators.

  17. 17.

    Dybjer (1994, 2000) provides a general scheme for the formulation of such rules.

  18. 18.

    The term “judgement” in this sense was introduced by Martin-Löf (1982). The term had of course been used in logic before, but it had fallen out of fashion during, say, the first decades of the twentieth century; see e.g. Carnap (1934, § 1). For the early history of the use of the term in logic, see Martin-Löf (2011); for aspects of the later history, see Sundholm (2009).

  19. 19.

    For the relation between, on the one hand, recent discussions on truthmakers and truthmaker semantics and, on the other, Martin-Löf type theory, see Sundholm (1994) and Klev (2017b).

  20. 20.

    In the literature, also the term “proof-object” is used, following Diller and Troelstra (1984).

  21. 21.

    This contrasts with so-called justification logic (cf. Artemov and Fitting 2016), where a: A, understood as “a is a justification of A”, is a proposition. Thus, for instance b: (a: A) and (a: A) ⊃A, are well-formed formulae there.

  22. 22.

    See Curry (1963, ch. 2.C) for such an account of the metamathematical “⊢A”.

  23. 23.

    This is sometimes called the “Frege point” after Geach (1972, pp. 254–270); see e.g. Frege (1983, pp. 201–203).

  24. 24.

    Hausdorff (1914, p. 33) appears to have been the first to define the notion of function in this way solely in terms of set theory. On Hausdorff’s definition in a historical context, see Ulrich Felgner’s article in Hausdorff (2002, pp. 621–633).

  25. 25.

    Examples are Streicher (1993), Hofmann (1997), and Hofmann and Streicher (1998).

  26. 26.

    Cantor’s use of the term “mode of givenness” (Art des Gegebenseins) might have inspired Frege’s use of the same term in his elucidation of the notion of sense; see Sundholm (2001, pp. 65–67).

References

  • Aczel, P. (1978). The type theoretic interpretation of constructive set theory. In A. Macintyre, L. Pacholski, & J. Paris (Eds.), Logic colloquium 77 (pp. 55–66). Amsterdam: North-Holland.

    Google Scholar 

  • Artemov, S., & Fitting, M. (2016). Justification logic. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy. Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/win2016/entries/logic-justification/

    Google Scholar 

  • Aspinall, D., & Hofmann, M. (2005). Dependent types. In B. C. Pierce (Ed.), Advanced topics in types and programming languages (pp. 45–86). Cambridge: MIT Press.

    Google Scholar 

  • Barnes, J. (2003). Porphyry. Introduction. Translated with an introduction and commentary. Oxford: Oxford University Press.

    Google Scholar 

  • Bishop, E. (1967). Foundations of constructive analysis. New York: McGraw-Hill.

    Google Scholar 

  • Bradley, F. H. (1893). Appearance and reality. Oxford: Clarendon Press. Cited from the Ninth Impression (1930).

    Google Scholar 

  • Cantor, G. (1882). Ueber unendliche, lineare Punktmannichfaltigkeiten. Nummer 3. Mathematische Annalen, 20, 113–121.

    Google Scholar 

  • Cantor, G. (1883). Ueber unendliche, lineare Punktmannichfaltigkeiten. Nummer 5. Mathematische Annalen, 21, 545–591.

    Google Scholar 

  • Cantor, G. (1895). Beiträge zur Begründung der transfiniten Mengenlehre (Erster Artikel). Mathematische Annalen, 46, 481–512.

    Google Scholar 

  • Carnap, R. (1934). Logische Syntax der Sprache. Vienna: Julius Springer.

    Google Scholar 

  • Church, A. (1940). A formulation of the simple theory of types. Journal of Symbolic Logic, 5, 56–68.

    Google Scholar 

  • Church, A. (1956). Introduction to mathematical logic. Princeton: Princeton University Press.

    Google Scholar 

  • Curry, H. B. (1963). Foundations of mathematical logic. New York: McGraw-Hill.

    Google Scholar 

  • de Bruijn, N. G. (1975). Set theory with type restrictions. In A. Hajnal, R. Rado, & T. Sós (Eds.), Infinite and finite sets: to Paul Erdős on his 60th birthday (pp. 205–214). North-Holland.

    Google Scholar 

  • de Bruijn, N. G. (1995). Types in mathematics. Cahiers du Centre de Logique, 8, 27–54.

    Google Scholar 

  • Dedekind, R. (1888). Was sind und was sollen die Zahlen? Braunschweig: Vieweg und Sohn.

    Google Scholar 

  • Diller, J., & Troelstra, A. (1984). Realizability and intuitionistic logic. Synthese, 60, 253–282.

    Google Scholar 

  • Dummett, M. (1973). Frege. Philosophy of language. London: Duckworth. Cited from the second edition (1981).

    Google Scholar 

  • Dybjer, P. (1994). Inductive families. Formal Aspects of Computing, 6, 440–465.

    Google Scholar 

  • Dybjer, P. (2000). A general formulation of simultaneous inductive-recursive definitions in type theory. Journal of Symbolic Logic, 65, 525–549.

    Google Scholar 

  • Frege, G. (1892). Über Begriff und Gegenstand. Vierteljahrsschrift für wissenschaftliche Philosophie, 16, 192–205.

    Google Scholar 

  • Frege, G. (1893). Grundgesetze der Arithmetik I. Jena: Hermann Pohle.

    Google Scholar 

  • Frege, G. (1983). Nachgelassene Schriften. Hamburg: Felix Meiner Verlag.

    Google Scholar 

  • Geach, P. T. (1972). Logic matters. Oxford: Blackwell.

    Google Scholar 

  • Gentzen, G. (1936). Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen, 112, 493–565.

    Google Scholar 

  • Hallett, M. (1984). Cantorian set theory and limitation of size. Oxford: Clarendon Press.

    Google Scholar 

  • Harper, R., Honsell, F., & Plotkin, G. (1993). A framework for defining logics. Journal of the ACM, 40, 143–184.

    Google Scholar 

  • Hausdorff, F. (1914). Grundzüge der Mengenlehre. Leipzig: Veit & Comp.

    Google Scholar 

  • Hausdorff, F. (2002). Gesammelte Werke. Band II. Heidelberg: Springer.

    Google Scholar 

  • Hilbert, D. (1899). Grundlagen der Geometrie. Leipzig: Teubner.

    Google Scholar 

  • Hofmann, M. (1997). Extensional constructs in intensional type theory. London: Springer. Reprint of Ph.D. thesis, University of Edinburgh (1995).

    Google Scholar 

  • Hofmann, M., & Streicher, T. (1998). The groupoid interpretation of type theory. In G. Sambin & J. M. Smith (Eds.), Twenty-five years of constructive type theory (pp. 83–111). Oxford: Oxford University Press.

    Google Scholar 

  • Howard, W. A. (1980). The formulae-as-types notion of construction. In J. P. Seldin & J. R. Hindley (Eds.), To H.B. Curry: Essays on combinatory logic, lambda calculus and formalism (pp. 479–490). London: Academic Press.

    Google Scholar 

  • Husserl, E. (1913). Ideen zu einer reinen Phänomenologie und phänomenologischen Philosophie. Erstes Buch. Halle: Max Niemeyer.

    Google Scholar 

  • Kirk, G. S., Raven, J. E., & Schofield, M. (1983). The presocratic philosophers (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Klev, A. (2017a). Husserl and Carnap on regions and formal categories. In S. Centrone (Ed.), Essays on Husserl’s logic and philosophy of mathematics (pp. 409–429). Dordrecht: Springer.

    Google Scholar 

  • Klev, A. (2017b). Truthmaker semantics: Fine versus Martin-Löf. In P. Arazim & T. Lávička (Eds.), The logica yearbook 2016 (pp. 87–108). London: College Publications.

    Google Scholar 

  • Klev, A. (2018a). The concept horse is a concept. Review of Symbolic Logic, 11, 547–572.

    Google Scholar 

  • Klev, A. (2018b). The logical form of identity criteria. In P. Arazim & T. Lávička (Eds.), The logica yearbook 2017 (pp. 181–196). London: College Publications.

    Google Scholar 

  • Kreisel, G. (1962). Foundations of intuitionistic logic. In E. Nagel, P. Suppes, & A. Tarski (Eds.), Logic, methodology and the philosophy of science (pp. 198–210). Stanford: Stanford University Press.

    Google Scholar 

  • Linnebo, O. (2010). Pluralities and sets. Journal of Philosophy, 107, 144–164.

    Google Scholar 

  • Linnebo, O., & Rayo, A. (2012). Hierarchies ontological and ideological. Mind, 121, 269–308.

    Google Scholar 

  • Lowe, E. J. (1989). Kinds of being. Oxford: Basil Blackwell.

    Google Scholar 

  • Martin-Löf, P. (1982). Constructive mathematics and computer programming. In J. L. Cohen, J. Łoś, et al. (Eds.), Logic, methodology and philosophy of science VI, 1979 (pp. 153–175). Amsterdam: North-Holland.

    Google Scholar 

  • Martin-Löf, P. (1984). Intuitionistic type theory. Naples: Bibliopolis.

    Google Scholar 

  • Martin-Löf, P. (2011). When did ‘judgement’ come to be a term of logic? Lecture held at École Normale Supérieure on 14 October 2011. Video recording available at http://savoirs.ens.fr//expose.php?id=481

  • Meier-Oeser, S. (2001). Vielheit. In J. Ritter, K. Gründer, & G. Gabriel (Eds.), Historisches Wörterbuch der Philosophie (Vol. 11, pp. 1041–1050). Basel: Schwabe.

    Google Scholar 

  • Nordström, B., Petersson, K., & Smith, J. (1990). Programming in Martin-Löf’s type theory. Oxford: Oxford University Press.

    Google Scholar 

  • Quine, W. V. (1956). Unification of universes in set theory. Journal of Symbolic Logic, 21, 267–279.

    Google Scholar 

  • Russell, B. (1903). Principles of mathematics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Russell, B., & Whitehead, A. N. (1910). Principia mathematica (Vol. 1). Cambridge: Cambridge University Press.

    Google Scholar 

  • Schmidt, A. (1938). Über deduktive Theorien mit mehreren Sorten von Grunddingen. Mathematische Annalen, 115, 485–506.

    Google Scholar 

  • Schönfinkel, M. (1924). Bausteine der mathematischen Logik. Mathematische Annalen, 92, 305–316.

    Google Scholar 

  • Scott, D. (1982). Domains for denotational semantics. In M. Nielsen & E. M. Schmidt (Eds.), Automata, languages and programming (pp. 577–613). Heidelberg: Springer.

    Google Scholar 

  • Shoenfield, J. R. (1967). Mathematical logic. Reading: Addison-Wesley.

    Google Scholar 

  • Streicher, T. (1993). Investigations into intensional type theory. Habilitation thesis, Ludwig Maximilian University Munich.

    Google Scholar 

  • Sundholm, B. G. (1994). Existence, proof and truth-making: A perspective on the intuitionistic conception of truth. Topoi, 13, 117–126.

    Google Scholar 

  • Sundholm, B. G. (2001). Frege, August Bebel and the return of Alsace-Lorraine: The dating of the distinction between Sinn and Bedeutung. History and Philosophy of Logic, 22, 57–73.

    Google Scholar 

  • Sundholm, B. G. (2009). A century of judgement and inference, 1837–1936: Some strands in the development of logic. In L. Haaparanta (Ed.), The development of modern logic (pp. 263–317). Oxford: Oxford University Press.

    Google Scholar 

  • Sundholm, B. G. (2012). “Inference versus consequence” revisited: Inference, consequence, conditional, implication. Synthese, 187, 943–956.

    Google Scholar 

  • The Univalent Foundations Program (2013). Homotopy type theory: Univalent foundations of mathematics. Princeton: Institute for Advanced Study. http://homotopytypetheory.org/book

    Google Scholar 

  • Wadler, P. (2015). Propositions as types. Communications of the ACM, 58, 75–84. Extended version available at http://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-types/propositions-as-types.pdf

  • Wittgenstein, L. (1922). Tractatus logico-philosophicus. London: Routledge & Kegan Paul.

    Google Scholar 

  • Zermelo, E. (1930). Über Grenzzahlen und Mengenbereiche. Fundamenta Mathematicae, 16, 29–47.

    Google Scholar 

Download references

Acknowledgements

I am grateful to Deborah Kant for inviting me to contribute to this volume. The critical comments of two anonymous readers on an earlier draft helped me in the preparation of the final version of the paper. While writing the paper I have been supported by grant nr. 17-18344Y from the Czech Science Foundation, GAČR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansten Klev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klev, A. (2019). A Comparison of Type Theory with Set Theory. In: Centrone, S., Kant, D., Sarikaya, D. (eds) Reflections on the Foundations of Mathematics. Synthese Library, vol 407. Springer, Cham. https://doi.org/10.1007/978-3-030-15655-8_12

Download citation

Publish with us

Policies and ethics