Skip to main content

The Attacker Does not Always Hold the Initiative: Attack Trees with External Refinement

  • Conference paper
  • First Online:
Graphical Models for Security (GraMSec 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11086))

Included in the following conference series:

  • 411 Accesses

Abstract

Attack trees provide a structure to an attack scenario, where disjunctions represent choices decomposing attacker’s goals into smaller subgoals. This paper investigates the nature of choices in attack trees. For some choices, the attacker has the initiative, but for other choices either the environment or an active defender decides. A semantics for attack trees combining both types of choice is expressed in linear logic and connections with extensive-form games are highlighted. The linear logic semantics defines a specialisation preorder enabling trees, not necessarily equal, to be compared in such a way that all strategies are preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramsky, S., Jagadeesan, R.: Games and full completeness for multiplicative linear logic. J. Symbolic Logic 59(2), 543–574 (1994). https://doi.org/10.2307/2275407

    Article  MathSciNet  MATH  Google Scholar 

  2. Abramsky, S., Jagadeesan, R.: Game semantics for access control. In: Proceedings of the 25th Conference on Mathematical Foundations of Programming Semantics (MFPS 2009) Electronic Notes in Theoretical Computer Science, vol. 249, pp. 135–156 (2009). https://doi.org/10.1016/j.entcs.2009.07.088

  3. Abramsky, S., Melliès, P.-A.: Concurrent games and full completeness. In: 14th Annual IEEE Symposium on Logic in Computer Science LICS, Trento, Italy, 2–5 July 1999, pp. 431–442. IEEE Computer Society (1999). https://doi.org/10.1109/LICS.1999.782638

  4. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Logic Comput. 2(3), 297–347 (1992). https://doi.org/10.1093/logcom/2.3.297

    Article  MathSciNet  MATH  Google Scholar 

  5. Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In: Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 95–114. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46666-7_6

    Chapter  Google Scholar 

  6. Aslanyan, Z., Nielson, F., Parker, D.: Quantitative verification and synthesis of attack-defence scenarios. In: 2016 IEEE 29th Computer Security Foundations Symposium (CSF), pp. 105–119. IEEE Computer Society (2016). https://doi.org/10.1109/CSF.2016.15

  7. Audinot, M., Pinchinat, S., Kordy, B.: Is my attack tree correct? In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10492, pp. 83–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66402-6_7

    Chapter  Google Scholar 

  8. Birkhoff, G.: Rings of sets. Duke Math. J. 3(3), 443–454 (1937). https://doi.org/10.1215/S0012-7094-37-00334-X

    Article  MathSciNet  MATH  Google Scholar 

  9. Bistarelli, S., Fioravanti, F., Peretti, P.: Defense trees for economic evaluation of security investments. In: First International Conference on Availability, Reliability and Security (ARES 2006), pp. 416–423. IEEE Computer Society (2006). https://doi.org/10.1109/ARES.2006.46

  10. Blass, A.: A game semantics for linear logic. Ann. Pure Appl. Logic 56(1), 183–220 (1992). https://doi.org/10.1016/0168-0072(92)90073-9

    Article  MathSciNet  MATH  Google Scholar 

  11. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes. J. ACM 31(3), 560–599 (1984). https://doi.org/10.1145/828.833

    Article  MathSciNet  MATH  Google Scholar 

  12. Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational choice of security measures via multi-parameter attack trees. In: Lopez, J. (ed.) CRITIS 2006. LNCS, vol. 4347, pp. 235–248. Springer, Heidelberg (2006). https://doi.org/10.1007/11962977_19

    Chapter  Google Scholar 

  13. Chaudhuri, K., Miller, D., Saurin, A.: Canonical sequent proofs via multi-focusing. In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) TCS 2008. IIFIP, vol. 273, pp. 383–396. Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-387-09680-3_26

    Chapter  Google Scholar 

  14. Danos, V., Harmer, R.S.: Probabilistic game semantics. ACM Trans. Comput. Logic (TOCL) 3(3), 359–382 (2002). https://doi.org/10.1145/507382.507385

    Article  MathSciNet  MATH  Google Scholar 

  15. Debbabi, M., Saleh, M.: Game semantics model for security protocols. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 125–140. Springer, Heidelberg (2005). https://doi.org/10.1007/11576280_10

    Chapter  Google Scholar 

  16. Delande, O., Miller, D., Saurin, A.: Proof and refutation in MALL as a game. Ann. Pure Appl. Logic 161(5), 654–672 (2010). https://doi.org/10.1016/j.apal.2009.07.017

    Article  MathSciNet  MATH  Google Scholar 

  17. Deswarte, Y., Blain, L., Fabre, J.C.: Intrusion tolerance in distributed computing systems. In: Proceedings of 1991 IEEE Computer Society Symposium on Research in Security and Privacy, pp. 110–121, May 1991. https://doi.org/10.1109/RISP.1991.130780

  18. Dimovski, A.S.: Ensuring secure non-interference of programs by game semantics. In: Mauw, S., Jensen, C.D. (eds.) STM 2014. LNCS, vol. 8743, pp. 81–96. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11851-2_6

    Chapter  Google Scholar 

  19. Gadyatskaya, O., Hansen, R.R., Larsen, K.G., Legay, A., Olesen, M.C., Poulsen, D.B.: Modelling attack-defense trees using timed automata. In: Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 35–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7_3

    Chapter  MATH  Google Scholar 

  20. Gadyatskaya, O., Jhawar, R., Mauw, S., Trujillo-Rasua, R., Willemse, T.A.C.: Refinement-aware generation of attack trees. In: Livraga, G., Mitchell, C. (eds.) STM 2017. LNCS, vol. 10547, pp. 164–179. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68063-7_11

    Chapter  Google Scholar 

  21. Girard, J.-Y.: Linear logic. Theoret. comput. Sci. 50(1), 1–101 (1987). https://doi.org/10.1016/0304-3975(87)90045-4

    Article  MathSciNet  MATH  Google Scholar 

  22. Heijltjes, W., Hughes, D.J.: Complexity bounds for sum-product logic via additive proof nets and petri nets. In: 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, 6–10 July 2015, pp. 80–91. IEEE Computer Society (2015). https://doi.org/10.1109/LICS.2015.18

  23. Hermanns, H., Krämer, J., Krčál, J., Stoelinga, M.: The value of attack-defence diagrams. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 163–185. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49635-0_9

    Chapter  Google Scholar 

  24. Horne, R.: The consistency and complexity of multiplicative additive system virtual. Sci. Ann. Comput. Sci. 25(2), 245 (2015). https://doi.org/10.7561/SACS.2015.2.245

    Article  MathSciNet  MATH  Google Scholar 

  25. Horne, R., Mauw, S., Tiu, A.: Semantics for specialising attack trees based on linear logic. Fund. Inform. 153(1–2), 57–86 (2017). https://doi.org/10.3233/FI-2017-1531

    Article  MathSciNet  MATH  Google Scholar 

  26. Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S.: Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats, vol. 54. Springer, Heidelberg (2011). https://doi.org/10.1007/978-1-4614-0977-9

    Book  Google Scholar 

  27. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015. IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18467-8_23

    Chapter  Google Scholar 

  28. Jiang, R., Luo, J., Wang, X.: An attack tree based risk assessment for location privacy in wireless sensor networks. In: WiCOM, pp. 1–4 (2012). https://doi.org/10.1109/WiCOM.2012.6478402

  29. Kordy, B., Mauw, S., Melissen, M., Schweitzer, P.: Attack–defense trees and two-player binary zero-sum extensive form games are equivalent. In: Alpcan, T., Buttyán, L., Baras, J.S. (eds.) GameSec 2010. LNCS, vol. 6442, pp. 245–256. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17197-0_17

    Chapter  MATH  Google Scholar 

  30. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack-defense trees. J. Logic Comput. 24(1), 55–87 (2014). https://doi.org/10.1093/logcom/exs029

    Article  MathSciNet  MATH  Google Scholar 

  31. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense modeling: don’t miss the forest for the attack trees. C. S. Rev. 13–14, 1–38 (2014)

    MATH  Google Scholar 

  32. Laurent, O.: Polarized games. Ann. Pure Appl. Logic 130(1–3), 79–123 (2004). https://doi.org/10.1016/j.apal.2004.04.006

    Article  MathSciNet  MATH  Google Scholar 

  33. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://doi.org/10.1007/11734727_17

    Chapter  Google Scholar 

  34. Ray, I., Poolsapassit, N.: Using attack trees to identify malicious attacks from authorized insiders. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 231–246. Springer, Heidelberg (2005). https://doi.org/10.1007/11555827_14

    Chapter  Google Scholar 

  35. Roy, A., Kim, D.S., Trivedi, K.S.: Attack countermeasure trees: towards unifying the constructs of attack and defense trees. Secur. Commun. Netw. 5(8), 929–943 (2012). https://doi.org/10.1002/sec.299

    Article  Google Scholar 

  36. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)

    Google Scholar 

  37. Zonouz, S.A., Khurana, H., Sanders, W.H., Yardley, T.M.: RRE: a game-theoretic intrusion response and recovery engine. IEEE Trans. Parallel Distrib. Syst. 25(2), 395–406 (2014). https://doi.org/10.1109/TPDS.2013.211

    Article  Google Scholar 

Download references

Acknowledgment

Horne and Tiu receive support from MOE Tier 2 grant MOE2014-T2-2-076 and the National Research Foundation Singapore under its National Cybersecurity R&D Program (Award No. NRF2014NCR-NCR001-30). Mauw received funding from the Fonds National de la Recherche Luxembourg, grant C11/IS/1183245 (ADT2P), and the European Commissions Seventh Framework Programme (FP7/2007–2013) under grant agreement number 318003 (TREsPASS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alwen Tiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Horne, R., Mauw, S., Tiu, A. (2019). The Attacker Does not Always Hold the Initiative: Attack Trees with External Refinement. In: Cybenko, G., Pym, D., Fila, B. (eds) Graphical Models for Security. GraMSec 2018. Lecture Notes in Computer Science(), vol 11086. Springer, Cham. https://doi.org/10.1007/978-3-030-15465-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15465-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15464-6

  • Online ISBN: 978-3-030-15465-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics