Skip to main content

Stochastic Navier-Stokes Equation for a Compressible Fluid: Two-Loop Approximation

  • Conference paper
  • First Online:
11th Chaotic Modeling and Simulation International Conference (CHAOS 2018)

Abstract

A model of fully developed turbulence of a compressible fluid is briefly reviewed. It is assumed that fluid dynamics is governed by a stochastic version of Navier-Stokes equation. We show how corresponding field theoretic-model can be obtained and further analyzed by means of the perturbative renormalization group. Two fixed points of the RG equations are found. The perturbation theory is constructed within formal expansion scheme in parameter y, which describes scaling behavior of random force fluctuations. Actual calculations for fixed points’ coordinates are performed to two-loop order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  2. P.A. Davidson, Turbulence: An Introduction for Scientists and Engineers, 2nd edn. (Oxford University Press, Oxford, 2015)

    Book  Google Scholar 

  3. S.N. Shore, Astrophysical Hydrodynamics: An Introduction (Wiley-VCH Verlag GmbH & KGaA, Weinheim, 2007)

    Book  Google Scholar 

  4. V. Carbone, R. Marino, L. Sorriso-Valvo, A. Noullez, R. Bruno, Phys. Rev. Lett. 103, 061102 (2009)

    Article  ADS  Google Scholar 

  5. F. Sahraoui, M.L. Goldstein, P. Robert, YuV Khotyainstsev, Phys. Rev. Lett. 102, 231102 (2009)

    Article  ADS  Google Scholar 

  6. H. Aluie, G.L. Eyink, Phys. Rev. Lett. 104, 081101 (2010)

    Article  ADS  Google Scholar 

  7. S. Galtier, S. Banerjee, Phys. Rev. Lett. 107, 134501 (2011)

    Article  ADS  Google Scholar 

  8. S. Banerjee, L.Z. Hadid, F. Sahraoui, S. Galtier, Astrophys. J. Lett. 829, L27 (2016)

    Article  ADS  Google Scholar 

  9. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1959)

    Google Scholar 

  10. P. Sagaut, C. Cambon, Homogeneous Turbulence Dynamics (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  11. N.V. Antonov, M.M. Kostenko, Phys. Rev. E 90, 063016 (2014)

    Article  ADS  Google Scholar 

  12. N.V. Antonov, N.M. Gulitskiy, M.M. Kostenko, T. Lučivjanský, EPJ Web Conf. 125, 05006 (2016)

    Google Scholar 

  13. N.V. Antonov, N.M. Gulitskiy, M.M. Kostenko, T. Lučivjanský, EPJ Web of Conf. 137, 10003 (2016)

    Google Scholar 

  14. N.V. Antonov, N.M. Gulitskiy, M.M. Kostenko, T. Lučivjanský, Phys. Rev. E 95, 0331200 (2017)

    Article  Google Scholar 

  15. G. Falkovich, K. Gawȩdzki, M. Vergassola, Rev. Mod. Phys. 73, 913 (2001)

    Article  ADS  Google Scholar 

  16. A.N. Vasil’ev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics (Chapman Hall/CRC, Boca Raton, 2004)

    Book  Google Scholar 

  17. D.J. Amit, V. Martín-Mayor, Field Theory, the Renormalization Group and Critical Phenomena (World Scientific, Singapore, 2005)

    Book  Google Scholar 

  18. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 4th edn. (Oxford University Press, Oxford, 2002)

    Book  Google Scholar 

  19. L.Ts. Adzhemyan, N.V. Antonov, A.N. Vasil’ev: The Field Theoretic Renormalization Group in Fully Developed Turbulence (Gordon & Breach, London, 1999)

    Google Scholar 

  20. U. Täuber, Critical Dynamics: A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior (Cambridge University Press, New York, 2014)

    Google Scholar 

  21. R.H. Kraichnan, Phys. Fluids 11, 945 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  22. K. Gawȩdzki, A. Kupiainen, Phys. Rev. Lett. 75, 3834 (1995), D. Bernard, K. Gawȩdzki, A. Kupiainen, Phys. Rev. E 54, 2564 (1996), M. Chertkov, G. Falkovich, Phys. Rev. Lett. 76, 2706 (1996)

    Google Scholar 

  23. L.Ts. Adzhemyan, N.V. Antonov, A.N. Vasil’ev, Phys. Rev. E 58, 1823 (1998)

    Google Scholar 

  24. N.V. Antonov, J. Phys. A: Math. Gen. 39, 7825 (2006)

    Article  ADS  Google Scholar 

  25. N.V. Antonov, N.M. Gulitskiy, Lect. Notes Comp. Sci., 7125/2012, 128 (2012), N.V. Antonov, N.M. Gulitskiy, Phys. Rev. E 85, 065301(R) (2012), N.V. Antonov, N.M. Gulitskiy, Phys. Rev. E 87, 039902(E) (2013)

    Google Scholar 

  26. E. Jurčišinova, M. Jurčišin, J. Phys. A: Math. Theor., 45, 485501 (2012), E. Jurčišinova and M. Jurčišin, Phys. Rev. E 88, 011004 (2013)

    Google Scholar 

  27. E. Jurčišinova, M. Jurčišin, Phys. Rev. E 77, 016306 (2008), E. Jurčišinova, M. Jurčišin, R. Remecky, Phys. Rev. E 80, 046302 (2009), E. Jurčišinova, M. Jurčišin, R. Remecky, J. Phys. A: Math. Theor. 42, 275501 (2009)

    Google Scholar 

  28. N.V. Antonov, N.M. Gulitskiy, Phys. Rev. E 91, 013002 (2015), N.V. Antonov, N.M. Gulitskiy, Phys. Rev. E 92, 043018 (2015), N.V. Antonov, N.M. Gulitskiy, AIP Conf. Proc. 1701, 100006 (2016), N.V. Antonov, N.M. Gulitskiy, EPJ Web of Conf. 108, 02008 (2016)

    Google Scholar 

  29. E. Jurčišinova, M. Jurčišin, Phys. Rev. E 91, 063009 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. N.V. Antonov, A. Lanotte, A. Mazzino, Phys. Rev. E 61, 6586 (2000), N.V. Antonov, N.M. Gulitskiy, Theor. Math. Phys., 176(1), 851 (2013)

    Google Scholar 

  31. H. Arponen, Phys. Rev. E 79, 056303 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Hnatič, J. Honkonen, T. Lučivjanský, Acta Phys. Slovaca 66, 69 (2016)

    Google Scholar 

  33. L.Ts. Adzhemyan, N.V. Antonov, J. Honkonen, T.L. Kim, Phys. Rev. E 71, 016303 (2005)

    Google Scholar 

  34. N.V. Antonov, Phys. Rev. Lett. 92, 161101 (2004)

    Article  ADS  Google Scholar 

  35. N.V. Antonov, N.M. Gulitskiy, A.V. Malyshev, EPJ Web Conf. 126, 04019 (2016)

    Article  Google Scholar 

  36. E. Jurčišinova, M. Jurčišin, R. Remecky, Phys. Rev. E 93, 033106 (2016)

    Article  ADS  Google Scholar 

  37. M. Vergassola, A. Mazzino, Phys. Rev. Lett. 79, 1849 (1997)

    Article  ADS  Google Scholar 

  38. A. Celani, A. Lanotte, A. Mazzino, Phys. Rev. E 60, R1138 (1999)

    Article  ADS  Google Scholar 

  39. M. Chertkov, I. Kolokolov, M. Vergassola, Phys. Rev. E 56, 5483 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  40. N.V. Antonov, M. Yu, Nalimov, A.A. Udalov, Theor. Math. Phys. 110, 305 (1997)

    Google Scholar 

  41. N.V. Antonov, M.M. Kostenko, Phys. Rev. E 92, 053013 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  42. M. Hnatich, E. Jurčišinova, M. Jurčišin, M. Repašan, J. Phys. A: Math. Gen. 39, 8007 (2006)

    Article  ADS  Google Scholar 

  43. V.S. L’vov, A.V. Mikhailov, Preprint No. 54, Inst. Avtomat. Electron., Novosibirsk (1977)

    Google Scholar 

  44. I. Staroselsky, V. Yakhot, S. Kida, S.A. Orszag, Phys. Rev. Lett. 65, 171 (1990)

    Article  ADS  Google Scholar 

  45. S.S. Moiseev, A.V. Tur, V.V. Yanovskii, Sov. Phys. JETP 44, 556 (1976)

    ADS  Google Scholar 

  46. A.Z. Patashinskii, V.L. Pokrovskii, Fluctuation Theory of Phase Transitions (Pergamon Press, Oxford, 1979)

    Google Scholar 

  47. L.Ts. Adzhemyan, N.V. Antonov, A.N. Vasil’ev, Sov. Phys. JETP 68, 733 (1989)

    Google Scholar 

  48. J. Honkonen, M.Yu. Nalimov, Z. Phys, B 99, 297 (1996)

    Google Scholar 

  49. L.Ts. Adzhemyan, J. Honkonen, M.V. Kompaniets, A.N. Vasil’ev, Phys. Rev. E 71(3), 036305 (2005)

    Google Scholar 

  50. L.Ts. Adzhemyan, M. Hnatich, J. Honkonen, Eur. Phys. J B 73, 275 (2010)

    Google Scholar 

  51. D. Yu, Volchenkov, M. Yu. Nalimov, Theor. Math. Phys. 106(3), 307 (1996)

    Google Scholar 

  52. Wolfram Research, Mathematica, Version 9.0 (Champaign, Illinois, 2012)

    Google Scholar 

  53. L.Ts. Adzhemyan, A.N. Vasil’ev, M. Gnatich, Theor. Math. Phys. 64(2), 777 (1985)

    Google Scholar 

  54. N.V. Antonov, A. Lanotte, A. Mazzino, Phys. Rev. E 61, 6586 (2000)

    Article  ADS  Google Scholar 

  55. N.V. Antonov, M. Hnatich, J. Honkonen, M. Jurčišin, Phys. Rev. E 68, 046306 (2003)

    Article  ADS  Google Scholar 

  56. B. Duplantier, A. Ludwig, Phys. Rev. Lett. 66, 247 (1991), G.L. Eyink, Phys. Lett. A 172, 355 (1993)

    Google Scholar 

Download references

Acknowledgements

The work was supported by VEGA grant No. 1/0345/17 of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and by the Russian Foundation for Basic Research within the Project No. 16-32-00086. N. M. G. acknowledges the support from the Saint Petersburg Committee of Science and High School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Lučivjanský .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hnatič, M., Gulitskiy, N.M., Lučivjanský, T., Mižišin, L., Škultéty, V. (2019). Stochastic Navier-Stokes Equation for a Compressible Fluid: Two-Loop Approximation. In: Skiadas, C., Lubashevsky, I. (eds) 11th Chaotic Modeling and Simulation International Conference. CHAOS 2018. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-15297-0_16

Download citation

Publish with us

Policies and ethics