Skip to main content

Recent Advances in Minimally Invasive Surgery in Trauma and Elective Surgery

  • Chapter
  • First Online:
General Principles of Orthopedics and Trauma

Abstract

Accounting for more than a quarter of all surgical interventions, musculoskeletal pathology remains a significant healthcare burden, costing over £4 billion of NHS spending per annum. Accurate, reproducible, and safe surgery, leading to good outcomes, is of paramount importance. Minimally invasive surgery (MIS) is one development which seeks to address the above aim. It has been developed to preserve the anatomy, minimize complications, and optimize recovery using new techniques and instruments, which allow for a smaller area of access to perform traditional surgery. Concerns regarding the limited visual field, steep learning curve, and associated costs of new equipment and implants exist. In this chapter, we sought to assess the current state of MIS, assessing new advances in techniques and procedures for trauma and elective hip, knee, upper limb, foot, and ankle and spinal surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruedi TP, Murphy WM. AO principles of fracture management. Switzerland: AO Foundations; 2007.

    Google Scholar 

  2. Young MJ, Barrack R. Complications of internal fixation of tibial plateau fractures. Orthop Rev. 1994;23(2):149–54.

    CAS  PubMed  Google Scholar 

  3. Danis R. Theory and practice of osteosynthesis. Paris: Masson & Cie; 1949.

    Google Scholar 

  4. Foundation A. AO philosophy and evolution. 2018.

    Google Scholar 

  5. Toogood P, Huang A, Siebuhr K, Miclau T. Minimally invasive plate osteosynthesis versus conventional open insertion techniques for osteosynthesis. Injury. 2018;49:S19–23.

    Article  PubMed  Google Scholar 

  6. Halle-Smith JM, Carnegy AJ, Carr R, Ahmed A, Wooley R, Wall P. Is there evidence that the percutaneous compression plate method of internal fixation for intertrochanteric hip fractures leads to better intraoperative and postoperative outcomes than the dynamic hip screw? Clinical Medicine Insights: Trauma and Intensive Medicine. 2018;9 https://doi.org/10.1177/1179560318777750.

    Google Scholar 

  7. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.

    Article  PubMed  Google Scholar 

  8. Foundation A. Proximal femur Fractures. 2010.

    Google Scholar 

  9. Knobe M, Gradl G, Buecking B, et al. Locked minimally invasive plating versus fourth generation nailing in the treatment of AO/OTA 31A2. 2 fractures: a biomechanical comparison of PCCP® and Intertan nail®. Injury. 2015;46(8):1475–82.

    Article  PubMed  Google Scholar 

  10. Anakwe R, Aitken S, Khan L. Osteoporotic periprosthetic fractures of the femur in elderly patients: outcome after fixation with the LISS plate. Injury. 2008;39(10):1191–7.

    Article  CAS  PubMed  Google Scholar 

  11. Smith T, Hedges C, MacNair R, Schankat K, Wimhurst J. The clinical and radiological outcomes of the LISS plate for distal femoral fractures: a systematic review. Injury. 2009;40(10):1049–63.

    Article  CAS  PubMed  Google Scholar 

  12. Tank JC, Schneider PS, Davis E, et al. Early mechanical failures of the synthes variable angle locking distal femur plate. J Orthop Trauma. 2016;30(1):e7–e11.

    Article  PubMed  Google Scholar 

  13. Tidwell JE, Roush EP, Ondeck CL, Kunselman AR, Reid JS, Lewis GS. The biomechanical cost of variable angle locking screws. Injury. 2016;47(8):1624–30.

    Article  PubMed  Google Scholar 

  14. Hebert-Davies J, Laflamme G-Y, Rouleau D, et al. A biomechanical study comparing polyaxial locking screw mechanisms. Injury. 2013;44(10):1358–62.

    Article  PubMed  Google Scholar 

  15. Cole P, Zlowodzki M, Kregor P. Less invasive stabilization system (LISS) for fractures of the proximal tibia: indications, surgical technique and preliminary results of the UMC Clinical Trial. Injury. 2003;34:A16–29.

    Article  PubMed  Google Scholar 

  16. Cole PA, Zlowodzki M, Kregor PJ. Treatment of proximal tibia fractures using the less invasive stabilization system: surgical experience and early clinical results in 77 fractures. J Orthop Trauma. 2004;18(8):528–35.

    Article  PubMed  Google Scholar 

  17. Gösling T, Schandelmaier P, Marti A, Hufner T, Partenheimer A, Krettek C. Less invasive stabilization of complex tibial plateau fractures: a biomechanical evaluation of a unilateral locked screw plate and double plating. J Orthop Trauma. 2004;18(8):546–51.

    Article  PubMed  Google Scholar 

  18. Neogi DS, Trikha V, Mishra KK, Bandekar SM, Yadav CS. Comparative study of single lateral locked plating versus double plating in type C bicondylar tibial plateau fractures. Ind J Orthop. 2015;49(2):193.

    Article  Google Scholar 

  19. Jiang R, Luo C-F, Wang M-C, Yang T-Y, Zeng B-F. A comparative study of Less Invasive Stabilization System (LISS) fixation and two-incision double plating for the treatment of bicondylar tibial plateau fractures. Knee. 2008;15(2):139–43.

    Article  PubMed  Google Scholar 

  20. McNamara IR, Smith TO, Shepperd KL, et al. Surgical fixation methods for tibial plateau fractures. Cochrane Database Syst Rev. 2015;(9)

    Google Scholar 

  21. Krupp RJ, Malkani AL, Roberts CS, Seligson D, Crawford CH, Smith L. Treatment of bicondylar tibia plateau fractures using locked plating versus external fixation. Orthopedics. 2009;32(8)

    Article  Google Scholar 

  22. Wang Z, Tang Z, Liu C, Xu Y. Comparison of outcome of ARIF and ORIF in the treatment of tibial plateau fractures. Knee Surg Sports Traumatol Arthrosc. 2017;25(2):578–83.

    Article  PubMed  Google Scholar 

  23. Chen X-Z, Liu C-G, Chen Y, Wang L-Q, Zhu Q-Z, Lin P. Arthroscopy-assisted surgery for tibial plateau fractures. Arthroscopy. 2015;31(1):143–53.

    Article  PubMed  Google Scholar 

  24. Wang Y, Wang J, Tang J, Zhou F, Yang L, Wu J. Arthroscopy assisted reduction percutaneous internal fixation versus open reduction internal fixation for low energy tibia plateau fractures. Sci Rep. 2018;8(1):14068.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chan Y-S, Chiu C-H, Lo Y-P, et al. Arthroscopy-assisted surgery for tibial plateau fractures: 2-to 10-year follow-up results. Arthroscopy. 2008;24(7):760–768. e762.

    Article  PubMed  Google Scholar 

  26. Chiu C-H, Cheng C-Y, Tsai M-C, et al. Arthroscopy-assisted reduction of posteromedial tibial plateau fractures with buttress plate and cannulated screw construct. Arthroscopy. 2013;29(8):1346–54.

    Article  PubMed  Google Scholar 

  27. Buckley R, Tough S, McCormack R. Operative compared with nonoperative treatment of displaced intra-articular calcaneal fractures. Orthop Trauma. 2010;8(02):29–36.

    Google Scholar 

  28. Harvey EJ, Grujic L, Early JS, Benirschke SK, Sangeorzan BJ. Morbidity associated with ORIF of intra-articular calcaneus fractures using a lateral approach. Foot Ankle Int. 2001;22(11):868–73.

    Article  CAS  PubMed  Google Scholar 

  29. Burdeaux JB. The medical approach for calcaneal fractures. Clin Orthop Relat Res. 1993;(290):96–107.

    Google Scholar 

  30. Burdeaux BD Jr. Fractures of the calcaneus: open reduction and internal fixation from the medial side a 21-year prospective study. Foot Ankle Int. 1997;18(11):685–92.

    Article  PubMed  Google Scholar 

  31. Carr JB. Surgical treatment of intra-articular calcaneal fractures: a review of small incision approaches. J Orthop Trauma. 2005;19(2):109–17.

    Article  PubMed  Google Scholar 

  32. Majeed H, McBride D. Minimally invasive reduction and percutaneous fixation versus open reduction and internal fixation. Foot Ankle Surg. 2017;23:62.

    Article  Google Scholar 

  33. McMahon SE, Smith TO, Hing CB. A meta-analysis of randomised controlled trials comparing conventional to minimally invasive approaches for repair of an Achilles tendon rupture. Foot Ankle Surg. 2011;17(4):211–7.

    Article  PubMed  Google Scholar 

  34. Gardner MJ, Griffith MH, Dines JS, Briggs SM, Weiland AJ, Lorich DG. The extended anterolateral acromial approach allows minimally invasive access to the proximal humerus. Clin Orthop Relat Res. 2005;(434):123–9.

    Google Scholar 

  35. Kobayashi M, Watanabe Y, Matsushita T. Early full range of shoulder and elbow motion is possible after minimally invasive plate osteosynthesis for humeral shaft fractures. J Orthop Trauma. 2010;24(4):212–6.

    Article  PubMed  Google Scholar 

  36. Zhiquan A, Bingfang Z, Yeming W, Chi Z, Peiyan H. Minimally invasive plating osteosynthesis (MIPO) of middle and distal third humeral shaft fractures. J Orthop Trauma. 2007;21(9):628–33.

    Article  PubMed  Google Scholar 

  37. Liverneaux P, Ichihara S, Facca S, Hidalgo JD. Outcomes of minimally invasive plate osteosynthesis (MIPO) with volar locking plates in distal radius fractures: a review. Hand Surg Rehabil. 2016;35:S80–5.

    Article  Google Scholar 

  38. Skovrlj B, Belton P, Zarzour H, Qureshi SA. Perioperative outcomes in minimally invasive lumbar spine surgery: a systematic review. World J Orthop. 2015;6(11):996.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Karuppiah K, Sinha J. Robotics in trauma and orthopaedics. Annals R Coll Surg Engl. 2018;100(6_sup):8–18.

    Article  Google Scholar 

  40. Palan J, Manktelow A. Surgical approaches for primary total hip replacement. Orthopaed Trauma. 2018;32(1):1–12.

    Article  Google Scholar 

  41. OrthoNorCal. 2017. https://orthonorcal.com/wp-content/uploads/2016/06/Hip-mini-single.jpg. Accessed 19 Nov 2018.

  42. OrthoNorCal. 2017. https://orthonorcal.com/wp-content/uploads/2016/06/Hip-smal-incision.jpg. Accessed 19 Nov 2018.

  43. (NICE) NIfhaCE. Minimally Invasive Hip Replacement. 20th September 2018.

    Google Scholar 

  44. Cheng T, Feng J, Liu T, Zhang X. Minimally invasive total hip arthroplasty: a systematic review. Int Orthop. 2009;33(6):1473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Migliorini F, Biagini M, Rath B, Meisen N, Tingart M, Eschweiler J. Total hip arthroplasty: minimally invasive surgery or not? Meta-analysis of clinical trials. Int Orthop. 2018:1–10.

    Google Scholar 

  46. Levine MJ, West K, Michelson J, Manner P. Retrospective comparison of two-incision total hip arthroplasty with a standard direct lateral approach: a single surgeon’s experience. Paper presented at: Seminars in Arthroplasty 2007.

    Article  Google Scholar 

  47. Lawlor M, Humphreys P, Morrow E, et al. Comparison of early postoperative functional levels following total hip replacement using minimally invasive versus standard incisions. A prospective randomized blinded trial. Clin Rehabil. 2005;19(5):465–74.

    Article  PubMed  Google Scholar 

  48. Garellick G, Kärrholm J, Rogmark C, Herberts P. Swedish Hip Arthroplasty Register: Annual Report, 2008. Department of Orthopaedics, Sahlgrenska University Hospital. 2009.

    Google Scholar 

  49. Swanson TV. Early results of 1000 consecutive, posterior, single-incision minimally invasive surgery total hip arthroplasties. J Arthroplast. 2005;20:26–32.

    Article  Google Scholar 

  50. Flören M, Lester DK. Durability of implant fixation after less-invasive total hip arthroplasty. J Arthroplast. 2006;21(6):783–90.

    Article  Google Scholar 

  51. Smith TO, Blake V, Hing CB. Minimally invasive versus conventional exposure for total hip arthroplasty: a systematic review and meta-analysis of clinical and radiological outcomes. Int Orthop. 2011;35(2):173–84.

    Article  PubMed  Google Scholar 

  52. Noble P, Johnston J, Alexander J, et al. Making minimally invasive THR safe: conclusions from biomechanical simulation and analysis. Int Orthop. 2007;31(1):25–8.

    Article  PubMed Central  Google Scholar 

  53. Sershon RA, Tetreault MW, Della Valle CJ. A prospective randomized trial of mini-incision posterior and 2-incision total hip arthroplasty: minimum 5-year follow-up. J Arthroplast. 2017;32(8):2462–5.

    Article  Google Scholar 

  54. Abdel MP, Chalmers BP, Trousdale RT, Hanssen AD, Pagnano MW. randomized clinical trial of 2-incision vs. mini-posterior total hip arthroplasty: differences persist at 10 years. J Arthroplast. 2017;32(9):2744–7.

    Article  Google Scholar 

  55. Picard F, Deakin A, Balasubramanian N, Gregori A. Minimally invasive total knee replacement: techniques and results. Eur J Orthop Surg Traumatol. 2018;28(5):1–11.

    Article  Google Scholar 

  56. Tasker A, Hassaballa M, Murray J, et al. Minimally invasive total knee arthroplasty; a pragmatic randomised controlled trial reporting outcomes up to 2 year follow up. Knee. 2014;21(1):189–93.

    Article  PubMed  Google Scholar 

  57. Hernández-Vaquero D, et al. Cirugía de minima invasion frente acirugía convencional. Unaaproximación desde la evidencia científica. Rev Esp Cir Ortop Traumatol. 2012;56:444–58.

    PubMed  Google Scholar 

  58. Khakha R, Chowdhry M, Norris M, Kheiran A, Patel N, Chauhan S. Five-year follow-up of minimally invasive computer assisted total knee arthroplasty (MICATKA) versus conventional computer assisted total knee arthroplasty (CATKA)—a population matched study. Knee. 2014;21(5):944–8.

    Article  CAS  PubMed  Google Scholar 

  59. Dalury DF, Dennis DA. Mini-incision total knee arthroplasty can increase risk of component malalignment. Clin Orthop Relat Res. 2005;440:77–81.

    Article  PubMed  Google Scholar 

  60. Lin S, Chen C, Fu Y, et al. Comparison of the clinical and radiological outcomes of three minimally invasive techniques for total knee replacement at two years. Bone Joint J. 2013;95(7):906–10.

    Article  PubMed  Google Scholar 

  61. Stiglitz Y, Cazeau C. Minimally invasive surgery and percutaneous surgery of the hindfoot and midfoot. Eur J Orthop Surg Traumatol. 2018;28(5):839–47.

    Article  PubMed  Google Scholar 

  62. (NICE) NIfHaCE. Surgical correction of hallux valgus using minimal access techniques. February 2010.

    Google Scholar 

  63. Nix S, Smith M, Vicenzino B. Prevalence of hallux valgus in the general population: a systematic review and meta-analysis. J Foot Ankle Res. 2010;3(1):21.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bia A, Guerra-Pinto F, Pereira BS, Corte-Real N, Oliva XM. Percutaneous osteotomies in hallux valgus: a systematic review. J Foot Ankle Surg. 2017;57(1):123–30.

    Article  PubMed  Google Scholar 

  65. Rahman M, Summers L, Richter B, Mimran R, Jacob R. Comparison of techniques for decompressive lumbar laminectomy: the minimally invasive versus the “classic” open approach. Minimally Invasive Neurosurg. 2008;51(02):100–5.

    Article  CAS  Google Scholar 

  66. Khoo LT, Fessler RG. Microendoscopic decompressive laminotomy for the treatment of lumbar stenosis. Neurosurgery. 2002;51(suppl_2):S2-146–S142-154.

    Article  Google Scholar 

  67. Deluzio KJ, Lucio JC, Rodgers W. Value and cost in less invasive spinal fusion surgery: lessons from a community hospital. Int J Spine Surg. 2010;4(2):37–40.

    Google Scholar 

  68. Seng C, Siddiqui MA, Wong KP, et al. Five-year outcomes of minimally invasive versus open transforaminal lumbar interbody fusion: a matched-pair comparison study. Spine. 2013;38(23):2049–55.

    Article  PubMed  Google Scholar 

  69. Lehmann W, Ushmaev A, Ruecker A, et al. Comparison of open versus percutaneous pedicle screw insertion in a sheep model. Eur Spine J. 2008;17(6):857–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pecheva, M., Osmani, H.T., Khan, W.S. (2019). Recent Advances in Minimally Invasive Surgery in Trauma and Elective Surgery. In: Iyer, K., Khan, W. (eds) General Principles of Orthopedics and Trauma. Springer, Cham. https://doi.org/10.1007/978-3-030-15089-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15089-1_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15088-4

  • Online ISBN: 978-3-030-15089-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics