Skip to main content

Fractality in Geomechanics

  • Conference paper
  • First Online:
Desiderata Geotechnica

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

Abstract

The cognition of natural soil and rock, called geomatter as it is not a simple material, is impeded by opaqueness and wild randomness so that Aristoteles’ induction and Popper’s demarcation of theories are seemingly insufficient. This can be attributed to critical phenomena with seismogeneous chain reactions which exhibit fractal features, leave back permanent traces and elude mathematical treatment in general. In the stable range of grain fabrics buckling force chains cause a heat-like micro-seismicity which activates redistributions and can be captured mathematically. This is no more possible for chain reactions due to a positive feedback by seismic waves and pore water diffusion, with sizes from sand-boxes to subduction zones. Successions of them can be captured probabilistically by power laws with lower and upper bounds, which should be estimated in a rational way for keeping the geotechnical risk acceptably low. For this aim one should reduce deficits and avoid defects of cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Darwin, G.: On the horizontal thrust of a mass of sand. Proc. Inst. Civ. Eng. LXXL, 350–378 (1883)

    Google Scholar 

  2. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A 221, 163–198 (1921)

    Article  Google Scholar 

  3. Gudehus, G.: Physical Soil Mechanics. Springer, Berlin (2011)

    Book  Google Scholar 

  4. Gudehus, G.: Mechanisms of partly flooded loose sand deposits. Acta Geotech. 11, 505–517 (2016)

    Article  Google Scholar 

  5. Gudehus, G.: Granular solid dynamics with eutararaxy and hysteresis. Acta Geotechnica (2018, submitted)

    Google Scholar 

  6. Gudehus, G., Jiang, Y., Liu, M.: Seismo- and thermodynamics of granular solids. Granul. Matter 13, 319–340 (2010)

    Article  Google Scholar 

  7. Gudehus, G., Touplikiotis, A.: Wave propagation with energy diffusion in a fractal solid and its fractional image. Soil Dyn. Earthq. Eng. 89, 38–48 (2016)

    Article  Google Scholar 

  8. Gudehus, G., Touplikiotis, A.: On the stability of geotechnical systems and its fractal progressive loss. Acta Geotech. 13, 317–328 (2017). https://doi.org/10.1007/s11440-017-0549-x

    Article  Google Scholar 

  9. Gudehus, G., Touplikiotis, A.: Seismogeneous chain reactions and random successions of them. Soil Dyn. Earthq. Eng. (2018)

    Google Scholar 

  10. Huber, G., Wienbroer, H.: Vibro-viscosoity and granular temperature of cylindrical grain skeletons: experiments. In: Powder and Grains, vol. 1, pp. 287–290 (2005)

    Google Scholar 

  11. Jiang, Y., Liu, M.: A brief review of “granular elasticity”. Eur. Phys. J. E 22, 255–260 (2007)

    Article  Google Scholar 

  12. Jiang, Y., Liu, M.: Granular solid hydrodynamics. Granul. Matter 11, 139–156 (2009)

    Article  Google Scholar 

  13. Jiang, Y., Einav, V., Liu, M.: A thermodynamic treatment of partially saturated soils revealing the structure of effective stress. J. Mech. Phys. Solids 100, 131–146 (2016)

    Article  MathSciNet  Google Scholar 

  14. Kadanoff, L.P.: Built upon sand: theoretical ideas inspired by the flow of granular materials. Rev. Mod. Phys. 71(1), 435–444 (1999)

    Article  Google Scholar 

  15. Kahnemann, D.: Thinking, Fast and Slow. Farrar Straus and Giroux, New York (2003)

    Google Scholar 

  16. Kondic, L., Behringer, L.P.: Elastic energy, fluctuations and energy for granular materials. Europhys. Lett. 67(2), 205–211 (2004)

    Article  Google Scholar 

  17. Leighton, F., Ruiz, S., Sepulveda, S.A.: Reevaluacion del peligro sismico probabilistico en Chile central. Andean Geol. 37(2), 455–472 (2010)

    Google Scholar 

  18. Lempp, C., Menezes, F., Schöner, A.: Influence of pore fluid pressure on gradual mechanical weakening of permotriassic sandstones in multistep triaxial compression tests (2018, under preparation)

    Google Scholar 

  19. Madariaga, R.: Seismic source theory. Treatise Geophys. 4, 59–82 (2007)

    Article  Google Scholar 

  20. Mandelbrot, B.: The Fractal Geometry of Nature. Freeman, New York (1982)

    MATH  Google Scholar 

  21. Mandelbrot, B.: Multifractals and 1/f-Noise: Wild Self-affinity in Physics. Springer, New York (1999)

    Book  Google Scholar 

  22. Mandelbrot, B., Taleb, N.: A focus on the expectations that prove the rule. Financial Times (2006)

    Google Scholar 

  23. Mandl, G.: Mechanics of Tectonic Faulting: Models and Basic Concepts. Elsevier, Amsterdam (1988)

    Google Scholar 

  24. Mantegna, R.N.: Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes. Phys. Rev. E 49(5), 4677–4683 (1993)

    Article  Google Scholar 

  25. Mantegna, R.N., Stanley, H.E.: Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight. Phys. Rev. Lett. 73(22), 2946–2949 (1994)

    Article  MathSciNet  Google Scholar 

  26. MĂĽller, L.: Der Felsbau 1. Enke, Stuttgart (1963)

    Google Scholar 

  27. Niemunis, A., Wichtmann, T., Triantafyllidis, T.: A high-cycle accumulation model for sand. Comput. Geotech. 32, 245–263 (2005)

    Article  Google Scholar 

  28. Nübel, K.: Experimental and numerical investigation of shear localization in granular material. Ph.D. thesis, Veröff. Inst. Bodenmech. u. Felsmech., Univ. Karlsruhe, Heft 159 (2002)

    Google Scholar 

  29. Persson, B.: Sliding Friction: Physical Principles and Applications. Springer, Heideberg (1998)

    Book  Google Scholar 

  30. Popper, K.: Logik der Forschung. Springer, Wien (1935)

    Book  Google Scholar 

  31. Revushenko, A.F.: Mechanics of Granular Media. Springer, Berlin (2006)

    Google Scholar 

  32. Schinckus, C.: How physicists made stable Lévy processes physically plausible. Braz. J. Phys. 43, 281–293 (2013)

    Article  Google Scholar 

  33. Shapiro, S.A.: Elastic waves scattering and radiation by fractal inhomogeneity of a medium. Geophys. J. Int. 110, 591–600 (1992)

    Article  Google Scholar 

  34. Tarasov, V.E.: Fractional hydrodynamic equations for fractal media. Ann. Phys. 318, 286–307 (2005)

    Article  MathSciNet  Google Scholar 

  35. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics. Encyclopedia of Physics, III/c. Springer, Berlin (1965)

    Google Scholar 

  36. Turcotte, D.L.: Self-organized criticality: does it have anything to do with criticality and is it useful? Nonlinear Process. Geophys. 8, 193–196 (2001)

    Article  Google Scholar 

  37. Wolf, H., Koenig, D., Triantafyllidis, T.: Examination of shear band formation in granular material. J. Struct. Geol. 25, 1229–1240 (2003)

    Article  Google Scholar 

  38. Wu, R.-S., Aki, K.: The fractal nature of the inhomogeneities in the lithosphere evidenced from seismic wave scattering. Pageophys 123, 805–819 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

I owe stimulations for the present paper particularly to Roberto Cudmani (Munich), Gerhard Huber (Karlsruhe), Demetrios Kolymbas (Innsbruck), Mario Liu (TĂĽbingen), Andrzej Niemunis (Karlsruhe) and Asterios Touplikiotis (Karlsruhe).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Gudehus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gudehus, G. (2019). Fractality in Geomechanics. In: Wu, W. (eds) Desiderata Geotechnica. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-14987-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14987-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14986-4

  • Online ISBN: 978-3-030-14987-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics