Skip to main content

A New Protocol for Energy Harvesting Decode-and-Forward Relaying Networks

  • Conference paper
  • First Online:
AETA 2018 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application (AETA 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 554))

  • 1112 Accesses

Abstract

This paper investigates radio frequency energy harvesting decode-and-forward (DF) multi-relay networks with hybrid power transfer architecture, i.e. time switching (TS) combines with power splitting (PS). Specifically, this system consists of one source, one destination and multiple energy constraint relay nodes which help to the source transfer information to the destination over Nakagami fading channels. In order to improve the performance and reduce the load of this considered network, an efficient protocol for this system is proposed based on adaptive power splitting ratio adjustment and best relay selection. We aim to evaluate the performance of this considered system by deriving the closed-form expressions for the outage probability (OP) based on the statistical characteristics of signal-to-noise ratio (SNR). In addition, the results show that this scheme outperforms the random relay selection scheme, including transmit SNR, number of relays, active energy and fading severity factor. Our analysis is also verified by Monte Carlo simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ulukus, S., Yener, A., Erkip, E., Simeone, O., Zorzi, M., Grover, P., Huang, K.: Energy harvesting wireless communications: a review of recent advances. IEEE J. Sel. Areas Commun. 33(3), 360–381 (2015)

    Article  Google Scholar 

  2. Ha, D.-B., Tran, D.-D., Tran-Ha, V., Hong, E.-K.: Performance of amplify-and-forward relaying with wireless power transfer over dissimilar channels. Elektronika ir Elektrotechnika J. 21(5), 90–95 (2015)

    Google Scholar 

  3. De Rango, F., Gerla, M., Marano, S.: A scalable routing scheme with group motion support in large and dense wireless ad hoc networks. Comput. Electr. Eng. 32(1–3), 224–240 (2006)

    Article  Google Scholar 

  4. Tran, D.D., Tran-Ha, V., Ha, D.B., Tran, H., Kaddoum, G.: Performance analysis of two-way relaying system with radio frequency energy harvesting and multiple antennas. In: 2016 IEEE 84th Vehicular Technology Conference, VTC 2016-Fall, Montréal, Canada, 18–21 September 2016 (2016)

    Google Scholar 

  5. Zhou, B., Lee, Y.-Z., Gerla, M., De Rango, F.: Geo-LANMAR: a scalable routing protocol for ad hoc networks with group motion. Wirel. Commun. Mob. Comput. 6(7), 989–1002 (2006)

    Article  Google Scholar 

  6. Ha, D.B., Nguyen, Q.S.: Outage performance of energy harvesting DF relaying NOMA networks. Mob. Netw. Appl. (2017)

    Google Scholar 

  7. Liu, Y.: Wireless information and power transfer for multirelay-assisted cooperative communication. IEEE Commun. Lett. 20(4), 784–787 (2016)

    Article  Google Scholar 

  8. Xu, K., Shen, Z., Wang, Y., Xia, X.: Beam-domain hybrid times witching and power splitting SWIPT in full-duplex massive MIMO system. EURASIP J. Wirel. Commun. Network. (2018)

    Google Scholar 

  9. Yan, J., Zhang, C., Gao, Z.: Distributed relay selection protocols for simultaneous wireless information and power transfer. In: 2014 IEEE 25th International Symposium on Personal, Indoor and Mobile Radio Communications, Montreal, QC, Canada, 08–13 October (2017)

    Google Scholar 

  10. Nguyen, H.-S., Do, D.-T., Nguyen, T.-S., Voznak, M.: Exploiting hybrid time switching-based and power splitting-based relaying protocol in wireless powered communication networks with outdated channel state information. J. Control Meas. Electron. Comput. Commun. 58(1), 111–118 (2017)

    Google Scholar 

  11. Singh, V., Ochiai, H.: A efficient time switching protocol with adaptive power splitting for wireless energy harvesting relay networks. In: IEEE 85th Vehicular Technology Conference (VTC Spring) (2017)

    Google Scholar 

  12. Zhong, S., Huang, H., Li, R.: Performance analysis of energy-harvesting-aware multi-relay networks in Nakagami-m fading. EURASIP J. Wirel. Commun. Netw. (2018)

    Google Scholar 

  13. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 7th edn. Academic Press, Cambridge (2007)

    MATH  Google Scholar 

Download references

Acknowledgment

This work was supported by the VSB-Technical University of Ostrava, Czech Republic - Networks and Telecommunications Technologies for Smart Cities under SGS Grant SP2018/59.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duy-Hung Ha .

Editor information

Editors and Affiliations

Appendix A: Proof of Proposition 1

Appendix A: Proof of Proposition 1

From (4), (5) and (8), the Eq. (10) can be rewritten as

$$\begin{aligned} {P_{out}}= & {} 1-\Pr [\eta (1-\varepsilon _i)\alpha T{P_0}X_{1i}> E_0), (a_i\gamma _0 X_{1i}-\beta )X_{2i} \ge (2^{\frac{R}{(1-\alpha )T}}-1)] \\= & {} 1-\Pr \left[ \phi _1 \bigg (1-\frac{\varOmega _1}{X_{1i}} \bigg ) X_{1i}> E_0, \bigg ( \phi _2 \bigg (1-\frac{\varOmega _1}{X_{1i}} \bigg ) X_{1i}-\beta \bigg ) X_{2i} \ge \varOmega _2 \right] \\= & {} 1-\Pr \left[ \phi _1 X_{1i}> E_0+\phi _1 \varOmega _1, \bigg ( \phi _2 X_{1i}-\beta -\phi _2 \varOmega _1 \bigg ) X_{2i} \ge \varOmega _2 \right] \\= & {} 1- \Pr \bigg [ X_{1i} > b_1, X_{2i} \ge \frac{\varOmega _2}{(\phi _2 X_{1i}-b_2)} \bigg ] \\= & {} 1- \int \limits _{b_1}^\infty {\left[ 1 - F_{X_{2i}} \left( \frac{\varOmega _2}{\phi _2 x-{b_2}} \right) \right] {f_{{X_{1i}}}}\left( {{x}} \right) dx} \end{aligned}$$
$$\begin{aligned} {P_{out}}= & {} 1 - \sum \limits _{k = 0}^{{m_2} - 1} \frac{{m_1^{m_1}m_2^k}}{{k!(m_1-1)!\lambda _1^{m_1} \lambda _2^k}} \int \limits _{b_1}^\infty {\left( \frac{\varOmega _2}{\phi _2 x-b_2} \right) ^k}x^{m_1-1}{e^{- \frac{{{m_2}}}{{{\lambda _2}}}\frac{\varOmega _2}{\phi _2 x-b_2}{-\textstyle {{{m_1}x} \over {{\lambda _1}}}}}}dx \nonumber \\= & {} 1 - \sum \limits _{k = 0}^{{m_2} - 1} \frac{{m_1^{m_1}m_2^k \varOmega _2^k e^{-\frac{m_1 b_2}{\lambda _1 \phi _2}}}}{{k!(m_1-1)!\lambda _1^{m_1} \lambda _2^k \phi ^{m_1}_2}} \int \limits _0^\infty {y^{-k}}{(y+b_2)}^{m_1-1}{e^{- \frac{{{m_2\varOmega _2}}}{{{\lambda _2 y}}}{-\textstyle {{{m_1}y} \over {{\lambda _1 \phi _2}}}}}}dy \nonumber \\= & {} 1 - \sum \limits _{k = 0}^{{m_2} - 1} \sum \limits _{j = 0}^{{m_1} - 1} \frac{C_{m_1-1}^j {m_1^{m_1}m_2^k \varOmega _2^k b^{m_1-j-1}_2 e^{-\frac{m_1 b_2}{\lambda _1 \phi _2}}}}{{k!(m_1-1)!\lambda _1^{m_1} \lambda _2^k \phi ^{m_1}_2}} \int \limits _0^\infty {y^{j-k}}{e^{- \frac{{{m_2\varOmega _2}}}{{{\lambda _2 y}}}{-\textstyle {{{m_1}y} \over {{\lambda _1 \phi _2}}}}}}dy \nonumber \\= & {} 1 - 2 \sum \limits _{k = 0}^{{m_2} - 1} \sum \limits _{j = 0}^{{m_1} - 1} \frac{{m_2^k \varOmega _2^k b^{m_1-j-1}_2 e^{-\frac{m_1 b_2}{\lambda _1 \phi _2}}}}{{k!j!(m_1-j-1)! \lambda _2^k }} \bigg (\frac{m_1}{\lambda _1 \phi _2} \bigg )^{m_1+k-j-1} u^{j-k+1} \mathcal {K}_{j-k+1} (2u), \end{aligned}$$
(18)

where \(\varOmega _1 = \frac{2^{\frac{R}{\alpha T}}-1}{\gamma _0}\), \(\varOmega _2 = 2^{\frac{R}{(1-\alpha )T}}-1\), \(\phi _1=\eta \alpha T{P_0}\), \(\phi _2=\frac{{\eta \alpha \gamma _0}}{{1 - \alpha }}\), \(b_1=\varOmega _1+\frac{E_0}{\phi _1}\), \(b_2=\beta +\phi _2 \varOmega _1\), \(u=\sqrt{\frac{m_1 m_2 \varOmega _2}{\lambda _1 \lambda _2 \phi _2}}\), and \(\mathcal {K}_{\nu }(.)\) is the modified Bessel function of the second kind and \(\nu ^{th}\) order [13]. Substituting \(\varOmega _2=\varOmega \), \(b_2=b\) and \(\phi _2=\phi \) into (18), the Proposition 1 is completely proved.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ha, DH., Ha, DB., Zdralek, J., Voznak, M., Nguyen, T.N. (2020). A New Protocol for Energy Harvesting Decode-and-Forward Relaying Networks. In: Zelinka, I., Brandstetter, P., Trong Dao, T., Hoang Duy, V., Kim, S. (eds) AETA 2018 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application. AETA 2018. Lecture Notes in Electrical Engineering, vol 554. Springer, Cham. https://doi.org/10.1007/978-3-030-14907-9_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14907-9_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14906-2

  • Online ISBN: 978-3-030-14907-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics