Skip to main content

Toxic Disorders and Encephalopathy

  • Chapter
  • First Online:
Handbook of Medical Neuropsychology
  • 2126 Accesses

Abstract

The purpose of the present chapter is to selectively review the literature on the neuroanatomical, neuropsychological, and emotional/behavioral effects of exposure to four different substances: organic solvents, lead, manganese (Mn), and carbon monoxide (CO). A discussion of all toxins is beyond the scope of this chapter. Rather, we chose to focus on the most common, the best researched, and, in our opinion, the most interesting. Recent research regarding each of these substances has provided a window into the mechanisms for changes in behavior and cognition. There are far too many substances known to affect the central nervous system to review them all here. In addition, the volume of literature on each of the substances we discuss is too large for comprehensive review. Rather, our goal is to provide clinicians with a theoretical background of the changes in behavior/emotions and cognition commonly observed with exposure to these substances, and to provide guidance for assessing exposed individuals. In this updated chapter, we have added a discussion of manganese , as there is a rapidly expanding literature on cognitive dysfunction with strong neuroimaging studies. We have also updated the other substances with some worthwhile additions to the literature. We will start with a general conceptualization of the cognitive neuroscience of toxic exposure before addressing each of the four substances. For each substance, we will review the particulars of exposure and symptom expression, the neurobehavioral symptoms, the neuroimaging changes, and the relationship among these. Based upon these findings, where possible, we will recommend areas to focus on and hypotheses to explore when evaluating patients with such exposures. We will address general themes for the assessment of patients with a history of toxic exposure, including measurement of exposure, determination of effort in medical–legal cases, and collaboration with occupational medicine specialists. Finally, we will comment where the field should focus on going forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Needleman H. Lead poisoning. Annu Rev Med. 2004;55:209–22.

    Article  PubMed  Google Scholar 

  2. Baker EL, Fine LJ. Solvent neurotoxicity: the current evidence. J Occup Med. 1986;28(2):126–9.

    PubMed  Google Scholar 

  3. Furu H, Sainio M, Hyvarinen HK, et al. Detecting chronic solvent encephalopathy in occupations at risk. Neurotoxicology. 2012;33(4):734–41.

    Article  PubMed  Google Scholar 

  4. Verberk MM, van der Hoek JA, van Valen E, et al. Decision rules for assessment of chronic solvent-induced encephalopathy: Results in 2370 patients. Neurotoxicology. 2012;33(4):742–52.

    Article  PubMed  Google Scholar 

  5. Baker EL. A review of recent research on health effects of human occupational exposure to organic solvents. A Crit Rev J Occup Med. 1994;36(10):1079–92.

    Article  Google Scholar 

  6. Hartman D. Neuropsychological toxicology: identification and assessment of human neurotoxic syndromes. 2nd ed. New York: Springer; 1995.

    Book  Google Scholar 

  7. Jin CF, Haut M, Ducatman A. Industrial solvents and psychological effects. Clin Occup Environ Med. 2004;4(4):597–620, v.

    Google Scholar 

  8. Mikkelsen S. Epidemiological update on solvent neurotoxicity. Environ Res. 1997;73(1–2):101–12.

    Article  PubMed  Google Scholar 

  9. Sainio MA Sr. Neurotoxicity of solvents. Handb Clin Neurol. 2015;131:93–110.

    Article  PubMed  Google Scholar 

  10. White RPS. Solvent encephalopathy. Oxford: Oxford University Press; 1993.

    Google Scholar 

  11. Morrow LMS, Sandstrom DJ. Neuropsychological sequelae associted with occupational and environmental exposure to chemicals. New York: Kluwer Academic/Plenum Oublishers; 2001.

    Google Scholar 

  12. Meyer-Baron M, Blaszkewicz M, Henke H, et al. The impact of solvent mixtures on neurobehavioral performance: conclusions from epidemiological data. Neurotoxicology. 2008;29(3):349–60.

    Article  PubMed  Google Scholar 

  13. van Valen E, van Thriel C, Akila R, et al. Chronic solvent-induced encephalopathy: European consensus of neuropsychological characteristics, assessment, and guidelines for diagnostics. Neurotoxicology. 2012;33(4):710–26.

    Article  PubMed  Google Scholar 

  14. Hanninen H, Antti-Poika M, Juntunen J, Koskenvuo M. Exposure to organic solvents and neuropsychological dysfunction: a study on monozygotic twins. Br J Ind Med. 1991;48(1):18–25.

    PubMed  PubMed Central  Google Scholar 

  15. Akila R, Muller K, Kaukiainen A, Sainio M. Memory performance profile in occupational chronic solvent encephalopathy suggests working memory dysfunction. J Clin Exp Neuropsychol. 2006;28(8):1307–26.

    Article  PubMed  Google Scholar 

  16. Morrow LA. Cuing attention: Disruptions following organic solvent exposure. Neuropsychology. 1994;8(3):471–6.

    Article  Google Scholar 

  17. Morrow LA, Robin N, Hodgson MJ, Kamis H. Assessment of Attention and Memory Efficiency in Persons with Solvent Neurotoxicity. Neuropsychologia. 1992;30(10):911–22.

    Article  PubMed  Google Scholar 

  18. Morrow LA MS, Sandstrom DJ. Neuropsychological sequelae associated with occupational and environmental exposure to chemicals. 2001.

    Chapter  Google Scholar 

  19. Morrow LA, Steinhauer SR, Condray R, Hodgson M. Neuropsychological performance of journeymen painters under acute solvent exposure and exposure-free conditions. J Int Neuropsychol Soc: JINS. 1997;3(3):269–75.

    Article  PubMed  Google Scholar 

  20. Morrow LA, Ryan CM, Hodgson MJ, Robin N. Risk-Factors Associated with Persistence of Neuropsychological Deficits in Persons with Organic-Solvent Exposure. J Nerv Ment Disease. 1991;179(9):540–5.

    Article  Google Scholar 

  21. Nilson LN, Backman L, Sallsten G, Hagberg S, Barregard L. Dose-related cognitive deficits among floor layers with previous heavy exposure to solvents. Arch Environ Health. 2003;58(4):208–17.

    Article  PubMed  Google Scholar 

  22. Nilson LN, Sallsten G, Hagberg S, Backman L, Barregard L. Influence of solvent exposure and aging on cognitive functioning: an 18 year follow up of formerly exposed floor layers and their controls. Occup Environ Med. 2002;59(1):49–57.

    Article  PubMed  PubMed Central  Google Scholar 

  23. van Valen E, Wekking E, van der Laan G, Sprangers M, van Dijk F. The course of chronic solvent induced encephalopathy: a systematic review. Neurotoxicology. 2009;30(6):1172–86.

    Article  PubMed  Google Scholar 

  24. Condray R, Morrow LA, Steinhauer SR, Hodgson M, Kelley M. Mood and behavioral symptoms in individuals with chronic solvent exposure. Psychiatry Res. 2000;97(2–3):191–206.

    Article  PubMed  Google Scholar 

  25. Haut MW, Kuwabara H, Ducatman AM, et al. Corpus callosum volume in railroad workers with chronic exposure to solvents. J Occup Environ Med. 2006;48(6):615–24.

    Article  PubMed  Google Scholar 

  26. Morrow LA, Ryan CM, Goldstein G, Hodgson MJ. A distinct pattern of personality disturbance following exposure to mixtures of organic solvents. J Occup Med. 1989;31(9):743–6.

    Article  PubMed  Google Scholar 

  27. Morrow LA, Gibson C, Bagovich GR, Stein L, Condray R, Scott A. Increased incidence of anxiety and depressive disorders in persons with organic solvent exposure. Psychosom Med. 2000;62(6):746–50.

    Article  PubMed  Google Scholar 

  28. Visser I, Lavini C, Booij J, et al. Cerebral impairment in chronic solvent-induced encephalopathy. Ann Neurol. 2008;63(5):572–80.

    Article  PubMed  Google Scholar 

  29. Morrow LA, Stein L, Bagovich GR, Condray R, Scott A. Neuropsychological assessment, depression, and past exposure to organic solvents. Appl Neuropsychol. 2001;8(2):65–73.

    Article  PubMed  Google Scholar 

  30. Visser I, Wekking EM, de Boer AG, et al. Prevalence of psychiatric disorders in patients with chronic solvent induced encephalopathy (CSE). Neurotoxicology. 2011;32(6):916–22.

    Article  PubMed  Google Scholar 

  31. Aydin K, Sencer S, Demir T, Ogel K, Tunaci A, Minareci O. Cranial MR findings in chronic toluene abuse by inhalation. AJNR Am J Neuroradiol. 2002;23(7):1173–9.

    PubMed  PubMed Central  Google Scholar 

  32. Rosenberg NL, Kleinschmidt-DeMasters BK, Davis KA, Dreisbach JN, Hormes JT, Filley CM. Toluene abuse causes diffuse central nervous system white matter changes. Ann Neurol. 1988;23(6):611–4.

    Article  PubMed  Google Scholar 

  33. Unger E, Alexander A, Fritz T, Rosenberg N, Dreisbach J. Toluene abuse: physical basis for hypointensity of the basal ganglia on T2-weighted MR images. Radiology. 1994;193(2):473–6.

    Article  PubMed  Google Scholar 

  34. Alkan A, Kutlu R, Hallac T, et al. Occupational prolonged organic solvent exposure in shoemakers: brain MR spectroscopy findings. Magn Reson Imaging. 2004;22(5):707–13.

    Article  PubMed  Google Scholar 

  35. Haut MW, Leach S, Kuwabara H, et al. Verbal working memory and solvent exposure: a positron emission tomography study. Neuropsychology. 2000;14(4):551–8.

    Article  PubMed  Google Scholar 

  36. Tang CY, Carpenter DM, Eaves EL, et al. Occupational solvent exposure and brain function: an fMRI study. Environ Health Perspect. 2011;119(7):908–13.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shih RA, Hu H, Weisskopf MG, Schwartz BS. Cumulative lead dose and cognitive function in adults: a review of studies that measured both blood lead and bone lead. Environ Health Perspect. 2007;115(3):483–92.

    Article  PubMed  Google Scholar 

  38. Balbus-Kornfeld JM, Stewart W, Bolla KI, Schwartz BS. Cumulative exposure to inorganic lead and neurobehavioural test performance in adults: an epidemiological review. Occup Environ Med. 1995;52(1):2–12.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Goodman M, LaVerda N, Clarke C, Foster ED, Iannuzzi J, Mandel J. Neurobehavioural testing in workers occupationally exposed to lead: systematic review and meta-analysis of publications. Occup Environ Med. 2002;59(4):217–23.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Meyer-Baron M, Seeber A. A meta-analysis for neurobehavioural results due to occupational lead exposure with blood lead concentrations < 70 microg/100 ml. Arch Toxicol. 2000;73(10–11):510–8.

    Article  PubMed  Google Scholar 

  41. Stewart WF, Schwartz BS. Effects of lead on the adult brain: a 15-year exploration. Am J Ind Med. 2007;50(10):729–39.

    Article  PubMed  Google Scholar 

  42. Bleecker ML, Ford DP, Celio MA, Vaughan CG, Lindgren KN. Impact of cognitive reserve on the relationship of lead exposure and neurobehavioral performance. Neurology. 2007;69(5):470–6.

    Article  PubMed  Google Scholar 

  43. Khalil N, Morrow LA, Needleman H, Talbott EO, Wilson JW, Cauley JA. Association of cumulative lead and neurocognitive function in an occupational cohort. Neuropsychology. 2009;23(1):10–9.

    Article  PubMed  Google Scholar 

  44. Lindgren KN, Masten VL, Tiburzi MJ, Ford DP, Bleecker ML. The factor structure of the Profile of Mood States (POMS) and its relationship to occupational lead exposure. J Occup Environ Med. 1999;41(1):3–10.

    Article  PubMed  Google Scholar 

  45. Rhodes D, Spiro A 3rd, Aro A, Hu H. Relationship of bone and blood lead levels to psychiatric symptoms: the normative aging study. J Occup Environ Med. 2003;45(11):1144–51.

    Article  PubMed  Google Scholar 

  46. Stewart WF, Schwartz BS, Davatzikos C, et al. Past adult lead exposure is linked to neurodegeneration measured by brain MRI. Neurology. 2006;66(10):1476–84.

    Article  PubMed  Google Scholar 

  47. Weisskopf MG, Hu H, Sparrow D, Lenkinski RE, Wright RO. Proton magnetic resonance spectroscopic evidence of glial effects of cumulative lead exposure in the adult human hippocampus. Environ Health Perspect. 2007;115(4):519–23.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Weisskopf MG, Hu H, Mulkern RV, et al. Cognitive deficits and magnetic resonance spectroscopy in adult monozygotic twins with lead poisoning. Environ Health Perspect. 2004;112(5):620–5.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Caffo B, Chen S, Stewart W, et al. Are Brain Volumes based on Magnetic Resonance Imaging Mediators of the Associations of Cumulative Lead Dose with Cognitive Function? Am J Epidemiol. 2007.

    Google Scholar 

  50. Schwartz BS, Chen S, Caffo B, et al. Relations of brain volumes with cognitive function in males 45 years and older with past lead exposure. NeuroImage. 2007;37(2):633–41.

    Article  PubMed  Google Scholar 

  51. Caffo B, Chen S, Stewart W, et al. Are brain volumes based on magnetic resonance imaging mediators of the associations of cumulative lead dose with cognitive function? Am J Epidemiol. 2008;167(4):429–37.

    Article  PubMed  Google Scholar 

  52. Seo J, Chang Y, Jang KE, et al. Altered executive function in the welders: A functional magnetic resonance imaging study. Neurotoxicology Teratol. 2016;56:26–34.

    Article  Google Scholar 

  53. Seo J, Lee BK, Jin SU, et al. Altered executive function in the lead-exposed brain: A functional magnetic resonance imaging study. Neurotoxicology. 2015;50:1–9.

    Article  PubMed  Google Scholar 

  54. (ATSDR) AfTSaDR. 2012 https://www.atsdr.cdc.gov/phs/phs.asp?id=100&tid=23. Accessed 10/16/2017, 2017.

  55. Bowler RM, Beseler CL, Gocheva VV, et al. Environmental exposure to manganese in air: Associations with tremor and motor function. Sci Total Environ. 2016;541:646–54.

    Article  PubMed  Google Scholar 

  56. Roels HA, Bowler RM, Kim Y, et al. Manganese exposure and cognitive deficits: a growing concern for manganese neurotoxicity. Neurotoxicology. 2012;33(4):872–80.

    Article  PubMed  Google Scholar 

  57. Dorman DC, Struve MF, Wong BA, Dye JA, Robertson ID. Correlation of brain magnetic resonance imaging changes with pallidal manganese concentrations in rhesus monkeys following subchronic manganese inhalation. Toxicol Sci: Off J Soc Toxicology. 2006;92(1):219–27.

    Article  Google Scholar 

  58. Chang Y, Woo ST, Kim Y, et al. Pallidal index measured with three-dimensional T1-weighted gradient echo sequence is a good predictor of manganese exposure in welders. J Magn Reson Imaging: JMRI. 2010;31(4):1020–6.

    Article  PubMed  Google Scholar 

  59. Bowler RM, Mergler D, Sassine MP, Larribe F, Hudnell K. Neuropsychiatric effects of manganese on mood. Neurotoxicology. 1999;20(2–3):367–78.

    PubMed  Google Scholar 

  60. Bowler RM, Gysens S, Diamond E, Booty A, Hartney C, Roels HA. Neuropsychological sequelae of exposure to welding fumes in a group of occupationally exposed men. Int J Hyg Environ Health. 2003;206(6):517–29.

    Article  PubMed  Google Scholar 

  61. Bowler RM, Gysens S, Diamond E, Nakagawa S, Drezgic M, Roels HA. Manganese exposure: neuropsychological and neurological symptoms and effects in welders. Neurotoxicology. 2006;27(3):315–26.

    Article  PubMed  Google Scholar 

  62. Bowler RM, Nakagawa S, Drezgic M, et al. Sequelae of fume exposure in confined space welding: a neurological and neuropsychological case series. Neurotoxicology. 2007;28(2):298–311.

    Article  PubMed  Google Scholar 

  63. Laohaudomchok W, Lin X, Herrick RF, et al. Neuropsychological effects of low-level manganese exposure in welders. Neurotoxicology. 2011;32(2):171–9.

    Article  PubMed  Google Scholar 

  64. Greiffenstein MF, Lees-Haley PR. Neuropsychological correlates of manganese exposure: a meta-analysis. J Clin Exp Neuropsychol. 2007;29(2):113–26.

    Article  PubMed  Google Scholar 

  65. Bleich S, Degner D, Sprung R, Riegel A, Poser W, Ruther E. Chronic manganism: fourteen years of follow-up. J Neuropsychiatry Clin Neurosci. 1999;11(1):117.

    Article  PubMed  Google Scholar 

  66. Roels HA, Ghyselen P, Buchet JP, Ceulemans E, Lauwerys RR. Assessment of the permissible exposure level to manganese in workers exposed to manganese dioxide dust. Br J Ind Med. 1992;49(1):25–34.

    PubMed  PubMed Central  Google Scholar 

  67. Lucchini RG, Guazzetti S, Zoni S, et al. Tremor, olfactory and motor changes in Italian adolescents exposed to historical ferro-manganese emission. Neurotoxicology. 2012;33(4):687–96.

    Article  PubMed  PubMed Central  Google Scholar 

  68. O’Neal SL, Zheng W. Manganese Toxicity Upon Overexposure: a Decade in Review. Curr Environ Health Rep. 2015;2(3):315–28.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Finkelstein Y, Milatovic D, Aschner M. Modulation of cholinergic systems by manganese. Neurotoxicology. 2007;28(5):1003–14.

    Article  PubMed  Google Scholar 

  70. Halliwell B GJ. Free radicals and biology and medicine. Oxford University Press; 2005.

    Google Scholar 

  71. Verhoeven WM, Egger JI, Kuijpers HJ. Manganese and acute paranoid psychosis: a case report. J Med Case Rep. 2011;5:146.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lezak MDHD. Bigler ED. Neuropsychological Assessment: Tranel D; 2012.

    Google Scholar 

  73. Bowler RM, Gocheva V, Harris M, et al. Prospective study on neurotoxic effects in manganese-exposed bridge construction welders. Neurotoxicology. 2011;32(5):596–605.

    Article  PubMed  Google Scholar 

  74. Kim Y, Jeong KS, Song HJ, et al. Altered white matter microstructural integrity revealed by voxel-wise analysis of diffusion tensor imaging in welders with manganese exposure. Neurotoxicology. 2011;32(1):100–9.

    Article  PubMed  Google Scholar 

  75. Fitsanakis VA, Zhang N, Avison MJ, Gore JC, Aschner JL, Aschner M. The use of magnetic resonance imaging (MRI) in the study of manganese neurotoxicity. Neurotoxicology. 2006;27(5):798–806.

    Article  PubMed  Google Scholar 

  76. Bowler RM, Yeh CL, Adams SW, et al. Association of MRI T1 relaxation time with neuropsychological test performance in manganese- exposed welders. Neurotoxicology. 2017.

    Google Scholar 

  77. Lewis MM, Flynn MR, Lee EY, et al. Longitudinal T1 relaxation rate (R1) captures changes in short-term Mn exposure in welders. Neurotoxicology. 2016;57:39–44.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lee EY, Flynn MR, Du G, et al. Editor’s Highlight: Lower Fractional Anisotropy in the Globus Pallidus of Asymptomatic Welders, a Marker for Long-Term Welding Exposure. Toxicol Sci: Off J Soc Toxicology. 2016;153(1):165–73.

    Article  Google Scholar 

  79. Long Z, Jiang YM, Li XR, et al. Vulnerability of welders to manganese exposure–a neuroimaging study. Neurotoxicology. 2014;45:285–92.

    Article  PubMed  Google Scholar 

  80. Chang Y, Jin SU, Kim Y, et al. Decreased brain volumes in manganese-exposed welders. Neurotoxicology. 2013;37:182–9.

    Article  PubMed  Google Scholar 

  81. Casjens S, Dydak U, Dharmadhikari S, et al. Association of exposure to manganese and iron with striatal and thalamic GABA and other neurometabolites - Neuroimaging results from the WELDOX II study. Neurotoxicology. 2017.

    Google Scholar 

  82. Ma RE, Ward EJ, Yeh CL, et al. Thalamic GABA levels and occupational manganese neurotoxicity: Association with exposure levels and brain MRI. Neurotoxicology. 2017.

    Google Scholar 

  83. Chang Y, Kim Y, Woo ST, et al. High signal intensity on magnetic resonance imaging is a better predictor of neurobehavioral performances than blood manganese in asymptomatic welders. Neurotoxicology. 2009;30(4):555–63.

    Article  PubMed  Google Scholar 

  84. Chang Y, Lee JJ, Seo JH, et al. Altered working memory process in the manganese-exposed brain. NeuroImage. 2010;53(4):1279–85.

    Article  PubMed  Google Scholar 

  85. Centers for Disease C, Prevention. Unintentional non-fire-related carbon monoxide exposures–United States, 2001–2003. MMWR Morb Mortal Wkly Rep. 2005;54(2):36–39.

    Google Scholar 

  86. Sircar K, Clower J, Shin MK, Bailey C, King M, Yip F. Carbon monoxide poisoning deaths in the United States, 1999 to 2012. Am J Emerg Med. 2015;33(9):1140–5.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Centers for Disease C, Prevention. Carbon monoxide–related deaths–United States, 1999–2004. MMWR Morb Mortal Wkly Rep. 2007;56(50):1309–1312.

    Google Scholar 

  88. Gale SD, Hopkins RO, Weaver LK, Bigler ED, Booth EJ, Blatter DD. MRI, quantitative MRI, SPECT, and neuropsychological findings following carbon monoxide poisoning. Brain Inj. 1999;13(4):229–43.

    Article  PubMed  Google Scholar 

  89. Prockop LD. Carbon monoxide brain toxicity: clinical, magnetic resonance imaging, magnetic resonance spectroscopy, and neuropsychological effects in 9 people. J Neuroimaging: Off J Am Soc Neuroimaging. 2005;15(2):144–9.

    Article  Google Scholar 

  90. Wolf SJ, Lavonas EJ, Sloan EP, Jagoda AS, American College of Emergency P. Clinical policy: Critical issues in the management of adult patients presenting to the emergency department with acute carbon monoxide poisoning. Ann Emerg Med. 2008;51(2):138–152.

    Article  PubMed  Google Scholar 

  91. Hopkins RO, Woon FL. Neuroimaging, cognitive, and neurobehavioral outcomes following carbon monoxide poisoning. Behav Cogn Neurosci Rev. 2006;5(3):141–55.

    Article  PubMed  Google Scholar 

  92. Dunham MD, Johnstone B. Variability of neuropsychological deficits associated with carbon monoxide poisoning: four case reports. Brain Inj. 1999;13(11):917–25.

    Article  PubMed  Google Scholar 

  93. Kesler SR, Hopkins RO, Weaver LK, Blatter DD, Edge-Booth H, Bigler ED. Verbal memory deficits associated with fornix atrophy in carbon monoxide poisoning. J Int Neuropsychol Soc: JINS. 2001;7(5):640–6.

    Article  PubMed  Google Scholar 

  94. Porter SS, Hopkins RO, Weaver LK, Bigler ED, Blatter DD. Corpus callosum atrophy and neuropsychological outcome following carbon monoxide poisoning. Arch Clin Neuropsychol: Off J Natl Acad Neuropsychologists. 2002;17(2):195–204.

    Article  Google Scholar 

  95. Weaver LK, Hopkins RO, Chan KJ, et al. Hyperbaric oxygen for acute carbon monoxide poisoning. N Engl J Med. 2002;347(14):1057–67.

    Article  PubMed  Google Scholar 

  96. Huang CC HC, Chen YC, Lin HJ, Hsu CC, Wang JJ, Su SB, Guo HR. Hyperbaric oxygen therapy is associated with lower short- and long-term mortality in patients with carbon monoxide poisoning. Chest. 2017.

    Google Scholar 

  97. Parkinson RB, Hopkins RO, Cleavinger HB, et al. White matter hyperintensities and neuropsychological outcome following carbon monoxide poisoning. Neurology. 2002;58(10):1525–32.

    Article  PubMed  Google Scholar 

  98. Gale SD, Hopkins RO, Weaver LK, Bigler ED, Booth EJ, Blatter DD. MRI, quantitative MRI, SPECT, and neuropsychological findings following carbon monoxide poisoning. Brain Inj. 1999;13(4):229–43.

    Article  PubMed  Google Scholar 

  99. Wilson BA. Cognitive functioning of adult survivors of cerebral hypoxia. Brain Inj. 1996;10(12):863–74.

    Article  PubMed  Google Scholar 

  100. Myers RA, DeFazio A, Kelly MP. Chronic carbon monoxide exposure: a clinical syndrome detected by neuropsychological tests. J Clin Psychol. 1998;54(5):555–67.

    Article  PubMed  Google Scholar 

  101. Bourgeois JA. Amnesia after carbon monoxide poisoning. Am J Psychiatry. 2000;157(11):1884–5.

    Article  PubMed  Google Scholar 

  102. Sohn YH, Jeong Y, Kim HS, Im JH, Kim JS. The brain lesion responsible for parkinsonism after carbon monoxide poisoning. Arch Neurol. 2000;57(8):1214–8.

    Article  PubMed  Google Scholar 

  103. Cocito L, Biagioli M, Fontana P, et al. Cognitive recovery after delayed carbon monoxide encephalopathy. Clin Neurol Neurosurg. 2005;107(4):347–50.

    Article  PubMed  Google Scholar 

  104. Lai CY, Huang YW, Tseng CH, Lin CL, Sung FC, Kao CH. Patients With Carbon Monoxide Poisoning and Subsequent Dementia: A Population-Based Cohort Study. Medicine. 2016;95(1):e2418.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wong CS, Lin YC, Hong LY, et al. Increased Long-Term Risk of Dementia in Patients With Carbon Monoxide Poisoning: A Population-Based Study. Medicine. 2016;95(3):e2549.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Jasper BW, Hopkins RO, Duker HV, Weaver LK. Affective outcome following carbon monoxide poisoning: a prospective longitudinal study. Cogn Behav Neurol: Off J Soc Behav Cogn Neurology. 2005;18(2):127–34.

    Article  Google Scholar 

  107. Choi IS. Parkinsonism after carbon monoxide poisoning. Eur Neurol. 2002;48(1):30–3.

    Article  PubMed  Google Scholar 

  108. Min SK. A brain syndrome associated with delayed neuropsychiatric sequelae following acute carbon monoxide intoxication. Acta Psychiatr Scand. 1986;73(1):80–6.

    Article  PubMed  Google Scholar 

  109. Kuroda H, Fujihara K, Mugikura S, Takahashi S, Kushimoto S, Aoki M. Altered white matter metabolism in delayed neurologic sequelae after carbon monoxide poisoning: A proton magnetic resonance spectroscopic study. J Neurol Sci. 2016;360:161–9.

    Article  PubMed  Google Scholar 

  110. Chen NC, Huang CW, Lui CC, et al. Diffusion-weighted imaging improves prediction in cognitive outcome and clinical phases in patients with carbon monoxide intoxication. Neuroradiology. 2013;55(1):107–15.

    Article  PubMed  Google Scholar 

  111. Kim YS, Cha YS, Kim MS, et al. The usefulness of diffusion-weighted magnetic resonance imaging performed in the acute phase as an early predictor of delayed neuropsychiatric sequelae in acute carbon monoxide poisoning. Hum Exp Toxicol. 2017:960327117722821.

    Google Scholar 

  112. Yeh ZT, Tsai CF, Yip PK, et al. Neuropsychological performance in patients with carbon monoxide poisoning. Appl Neuropsychol Adult. 2014;21(4):278–87.

    Article  PubMed  Google Scholar 

  113. Lo CP, Chen SY, Lee KW, et al. Brain injury after acute carbon monoxide poisoning: early and late complications. AJR Am J Roentgenol. 2007;189(4):W205–11.

    Article  PubMed  Google Scholar 

  114. Chen PC, Chen MH, Chen HL, et al. Callosal damage and cognitive deficits in chronic carbon monoxide intoxication: A diffusion tensor imaging study. J Neurol Sci. 2015;355(1–2):101–7.

    Article  PubMed  Google Scholar 

  115. O’Donnell P, Buxton PJ, Pitkin A, Jarvis LJ. The magnetic resonance imaging appearances of the brain in acute carbon monoxide poisoning. Clin Radiol. 2000;55(4):273–80.

    Article  PubMed  Google Scholar 

  116. Gottfried JA, Chatterjee A. Carbon monoxide-mediated hippocampal injury. Neurology. 2001;57(1):17.

    Article  PubMed  Google Scholar 

  117. Yarid NA, Harruff RC. Globus Pallidus Necrosis Unrelated to Carbon Monoxide Poisoning: Retrospective Analysis of 27 Cases of Basal Ganglia Necrosis. J Forensic Sci. 2015;60(6):1484–7.

    Article  PubMed  Google Scholar 

  118. Pulsipher DT, Hopkins RO, Weaver LK. Basal ganglia volumes following CO poisoning: A prospective longitudinal study. Undersea Hyperb Med. 2006;33(4):245–56.

    PubMed  Google Scholar 

  119. Chu K, Jung KH, Kim HJ, Jeong SW, Kang DW, Roh JK. Diffusion-weighted MRI and 99mTc-HMPAO SPECT in delayed relapsing type of carbon monoxide poisoning: evidence of delayed cytotoxic edema. Eur Neurol. 2004;51(2):98–103.

    Article  PubMed  Google Scholar 

  120. Lo CP, Chen SY, Chou MC, et al. Diffusion-tensor MR imaging for evaluation of the efficacy of hyperbaric oxygen therapy in patients with delayed neuropsychiatric syndrome caused by carbon monoxide inhalation. Eur J Neurol. 2007;14(7):777–82.

    Article  PubMed  Google Scholar 

  121. Jang JY, Lee SY, Kim JI, Park JB, Lee KJ, Chung HK. Application of biological monitoring to the quantitative exposure assessment for neuropsychological effect by chronic exposure to organic solvents. Int Arch Occup Environ Health. 1999;72(2):107–14.

    Article  PubMed  Google Scholar 

  122. Bianchini KJ, Houston RJ, Greve KW, et al. Malingered neurocognitive dysfunction in neurotoxic exposure: an application of the Slick criteria. J Occup Environ Med. 2003;45(10):1087–99.

    Article  PubMed  Google Scholar 

  123. van Hout MS, Schmand B, Wekking EM, Hageman G, Deelman BG. Suboptimal performance on neuropsychological tests in patients with suspected chronic toxic encephalopathy. Neurotoxicology. 2003;24(4–5):547–51.

    Article  PubMed  Google Scholar 

  124. Greve KW, Bianchini KJ, Black FW, et al. The prevalence of cognitive malingering in persons reporting exposure to occupational and environmental substances. Neurotoxicology. 2006;27(6):940–50.

    Article  PubMed  Google Scholar 

  125. Greve KW, Bianchini KJ, Black FW, et al. Classification accuracy of the Test of Memory Malingering in persons reporting exposure to environmental and industrial toxins: Results of a known-groups analysis. Arch Clin Neuropsychol: Off J Natl Acad Neuropsychologists. 2006;21(5):439–48.

    Article  Google Scholar 

  126. Abjornsson G, Palsson B, Karlson B, Orbaek P, Osterberg K. Psychological distress and coping in women married to men with a diagnosis of solvent-induced chronic toxic encephalopathy. Brain Inj. 2005;19(6):417–23.

    Article  PubMed  Google Scholar 

  127. Castellon SA, Hardy DJ, Hinkin CH, et al. Components of depression in HIV-1 infection: their differential relationship to neurocognitive performance. J Clin Exp Neuropsychol. 2006;28(3):420–37.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Heindel WC, Salmon DP, Shults CW, Walicke PA, Butters N. Neuropsychological evidence for multiple implicit memory systems: a comparison of Alzheimer’s, Huntington’s, and Parkinson’s disease patients. J Neurosci: Off J Soc Neuroscience. 1989;9(2):582–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc W. Haut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haut, M.W., Miller, L.E., Moran, M.T., Lonser, K. (2019). Toxic Disorders and Encephalopathy. In: Armstrong, C., Morrow, L. (eds) Handbook of Medical Neuropsychology. Springer, Cham. https://doi.org/10.1007/978-3-030-14895-9_30

Download citation

Publish with us

Policies and ethics