Skip to main content

Learning Disorders

  • Chapter
  • First Online:
Handbook of Medical Neuropsychology

Abstract

A specific learning disorder (LD) may be present when a child fails to develop adequate core academic skills, such as reading, writing, or calculation, despite adequate instruction and an absence of conditions that may account for the difficulties, such as intellectual disability [1]. The word “specific” in the term “specific learning disorder” indicates that the learning difficulty is not generalized; rather, it is specific to one or more core academic skills. In the most recent version of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) [2], LDs are regarded as neurodevelopmental disorders. As such, they involve inadequate development of academic skills, rather than representing a loss of previously acquired function. Notably, brain lesions may certainly result in cognitive deficits that affect reading, writing, and calculation, but such acquired losses of academic skills would not be classified as specific learning disorders (for a review, see Heilman and Valenstein) [3]. Most research on LDs has involved children, which are the focus of this chapter. For a review of LDs in adults, the interested reader is referred to Mapou [4]. In this chapter, we will first present a conceptual overview of LDs and types of LDs. Second, we will offer recommendations on how to assess children who present with academic skill deficits. Third, we will cover some of the fundamental mechanisms involved in LDs that have been identified in neuropsychological and imaging studies. We will conclude by mentioning some recent interventions that appear promising for remediating academic skill deficits among children with LDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fletcher JM, Lyon GR, Fuchs LS, Barnes MA. Learning disabilities: from identification to intervention. New York: The Guilford Press; 2007.

    Google Scholar 

  2. Association AP. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Association; 2013.

    Book  Google Scholar 

  3. Heilman KM, Valenstein E. Clinical neuropsychology. 4th ed. Oxford; New York: Oxford University Press; 2003.

    Google Scholar 

  4. Mapou RL. Adult learning disabilities and ADHD: research-informed assessment. New York: Oxford University Press; 2009.

    Google Scholar 

  5. Dombrowski SC, Kamphaus RW, Reynolds CR. After the demise of the discrepancy: proposed learning disabilities diagnostic criteria. Prof Psychol Res Pr 2004;35(4):364–72.

    Article  Google Scholar 

  6. Slot EM, van Viersen S, de Bree EH, Kroesbergen EH. Shared and unique risk factors underlying mathematical disability and reading and spelling disability. Front Psychol. 2016;7:803.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Germano E, Gagliano A, Curatolo P. Comorbidity of ADHD and dyslexia. Dev Neuropsychol. 2010;35(5):475–93.

    Article  PubMed  Google Scholar 

  8. Wechsler D. Wechsler intelligence scale for children–Fifth Edition technical and interpretive manual. San Antonio, TX: NCS Pearson; 2014.

    Google Scholar 

  9. Bloom B, Dey AN. Summary health statistics for U.S. children: National health interview survey, 2004. Vital Health Stat. 2006;10(227):1–85.

    Google Scholar 

  10. Altarac M, Saroha E. Lifetime prevalence of learning disability among US children. Pediatrics. 2007;119(Suppl 1):S77–83.

    Article  PubMed  Google Scholar 

  11. National center for health statistics. Children and youth with disabilities. https://nces.ed.gov/programs/coe/indicator_cgg.asp.

  12. Shaywitz S. Overcoming dyslexia: a new and complete science-based program for reading problems at any level. New York: Vintage Books; 2003.

    Google Scholar 

  13. Disabilities ICoL. Learning disabilities: a report to the U.S. congress. Washington, DC: US Printing Office; 1987.

    Google Scholar 

  14. Katusic SK, Colligan RC, Barbaresi WJ, Schaid DJ, Jacobsen SJ. Incidence of reading disability in a population-based birth cohort, 1976–1982, Rochester, Minn. Mayo Clin Proc. 2001;76(11):1081–92.

    Article  PubMed  Google Scholar 

  15. Shaywitz SE, Gruen JR, Shaywitz BA. Management of dyslexia, its rationale, and underlying neurobiology. Pediatr Clin North Am. 2007;54(3):609–23, viii.

    Article  PubMed  Google Scholar 

  16. Rutter M, Caspi A, Fergusson D, et al. Sex differences in developmental reading disability: new findings from 4 epidemiological studies. JAMA. 2004;291(16):2007–12.

    Article  PubMed  Google Scholar 

  17. Devine A, Soltesz F, Nobes A, Goswami U, Szucs D. Gender differences in developmental dyscalculia depend on diagnostic criteria. 20160926(0959–4752 (Print)).

    Google Scholar 

  18. Katusic SK, Colligan RC, Weaver AL, Barbaresi WJ. The forgotten learning disability: epidemiology of written-language disorder in a population-based birth cohort (1976–1982), Rochester, Minnesota. Pediatrics. 2009;123(5):1306–13.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Berninger VW, Nielsen KH, Abbott RD, Wijsman E, Raskind W. Gender differences in severity of writing and reading disabilities. J Sch Psychol. 2008;46(2):151–72.

    Article  PubMed  Google Scholar 

  20. Breier JI, Brookshire BL, Fletcher JM, et al. Identification of side of seizure onset in temporal lobe epilepsy using memory tests in the context of reading deficits. J Clin Exp Neuropsychol. 1997;19(2):161–71.

    Article  PubMed  Google Scholar 

  21. Schrank FA, McGrew KS, Mather N, Woodcock RW. Woodcock-Johnson IV. Rolling Meadows, IL: Riverside Publishing; 2014.

    Google Scholar 

  22. Wechsler D. Wechsler individual achievement test. 3rd ed. San Antonio, TX: Pearson; 2009.

    Google Scholar 

  23. Brown JI, Fishco VV, Hanna G. Nelson-Denny reading test: manual for scoring and interpretation, forms G & H. Rolling Meadows, IL: Riverside; 1993.

    Google Scholar 

  24. Wagner RK, Torgesen JK, Rashcotte CA, Pearson NA. Comprehensive test of phonological processing, 2nd ed. Austin, TX: Pro-Ed; 2013.

    Google Scholar 

  25. Wiederholt J, Bryant B. Gray oral reading test-fifth edition (GORT-5): examiner’s manual. Austin, TX: Pro-Ed; 2012.

    Google Scholar 

  26. Hammill DD, Larsen SC. Test of written language: TOWL4. Pro-ed; 2009.

    Google Scholar 

  27. Connolly AJ. KeyMath 3: diagnostic assessment. San Antonio, TX: Pearson; 2007.

    Google Scholar 

  28. Kirkwood MW, editor. Validity testing in the assessment of children and adolescents. New York, NY: Guilford Press; 2015.

    Google Scholar 

  29. Kirkwood MW. Pediatric validity assessment. NeuroRehabilitation. 2015;36(4):439–50.

    Article  PubMed  Google Scholar 

  30. Harrison AG, Edwards MJ. Symptom exaggeration in post-secondary students: preliminary base rates in a Canadian sample. Appl Neuropsychol. 2010;17(2):135–43.

    Article  PubMed  Google Scholar 

  31. Suhr JA, Harrison AG. Detection of noncredible presentation in learning disorder assessments. In: 15th Annual AACN Conference, 8 June 2017, Boston, MA; 2017.

    Google Scholar 

  32. Harrison AG. Child and adolescent psychoeducational evaluations. In: Kirkwood MW, editor. Validity testing in child and adolescent assessment. New York, NY: Guilford; 2015. p. 185–206.

    Google Scholar 

  33. Tombaugh T. Test of memory malingering (TOMM). North Tonawanda, NY: Multi-Health Systems; 1996.

    Google Scholar 

  34. Green P. Manual for the word memory test. Edmonton, Alberta, Canada: Green’s Publishing; 2003.

    Google Scholar 

  35. Green P. Manual for the medical symptom validity test. Edmonton, Alberta, Canada: Green’s Publishing; 2004.

    Google Scholar 

  36. Plomin R, Haworth CM, Meaburn EL, Price TS, Wellcome Trust Case Control C, Davis OS. Common DNA markers can account for more than half of the genetic influence on cognitive abilities. Psychol Sci. 2013;24(4):562–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Raskind WH, Peter B, Richards T, Eckert MM, Berninger VW. The genetics of reading disabilities: from phenotypes to candidate genes. Front Psychol. 2012;3:601.

    PubMed  Google Scholar 

  38. Hensler BS, Schatschneider C, Taylor J, Wagner RK. Behavioral genetic approach to the study of dyslexia. J Dev Behav Pediatr. 2010;31(7):525–32.

    Article  Google Scholar 

  39. Kovas Y, Plomin R. Learning abilities and disabilities: generalist genes, specialist environments. Curr Dir Psychol Sci. 2007;16(5):284–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Plomin R, Kovas Y, Haworth CM. Generalist genes: genetic links between brain, mind, and education. Mind Brain Educ. 2007;1(1):11–9.

    Article  Google Scholar 

  41. de Zeeuw EL, van Beijsterveldt CE, Glasner TJ, de Geus EJ, Boomsma DI. Arithmetic, reading and writing performance has a strong genetic component: a study in primary school children. Learn Individ Differ. 2016;47:156–66.

    Google Scholar 

  42. Peterson RL, Pennington BF. Developmental dyslexia. Annu Rev Clin Psychol. 2015;11:283–307.

    Article  PubMed  Google Scholar 

  43. Friend A, DeFries JC, Olson RK. Parental education moderates genetic influences on reading disability. Psychol Sci. 2008;19(11):1124–30.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Torgesen JK. Recent discoveries on remedial interventions for children with dyslexia. In: Snowling MJ, Hulme C, editors. Maiden, MA: Blackwell; 2006.

    Google Scholar 

  45. Meaburn EL, Harlaar N, Craig IW, Schalkwyk LC, Plomin R. Quantitative trait locus association scan of early reading disability and ability using pooled DNA and 100 K SNP microarrays in a sample of 5760 children. Mol Psychiatry. 2008;13(7):729–40.

    Article  PubMed  Google Scholar 

  46. Docherty SJ, Kovas Y, Petrill SA, Plomin R. Generalist genes analysis of DNA markers associated with mathematical ability and disability reveals shared influence across ages and abilities. BMC Genet. 2010;11:61.

    Google Scholar 

  47. Baron-Cohen S, Murphy L, Chakrabarti B, et al. A genome wide association study of mathematical ability reveals an association at chromosome 3q29, a locus associated with autism and learning difficulties: a preliminary study. PLoS ONE. 2014;9(5):e96374.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lind PA, Luciano M, Wright MJ, Montgomery GW, Martin NG, Bates TC. Dyslexia and DCDC2: normal variation in reading and spelling is associated with DCDC2 polymorphisms in an Australian population sample. Eur J Hum Genet. 2010;18(6):668–73.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Konig IR, Schumacher J, Hoffmann P, et al. Mapping for dyslexia and related cognitive trait loci provides strong evidence for further risk genes on chromosome 6p21. Am J Med Genet B Neuropsychiatr Genet. 2011;156B(1):36–43.

    Article  Google Scholar 

  50. Dejerine J. Sur un cas de cecite verbale avec agraphie, suivi d’autopsie. Mémoires de la Société Biologique. 1891;3:197–201.

    Google Scholar 

  51. Gerstmann J. Syndrome of finger agnosia, disorientation for right and left, agraphia, and acalculia. Arch Neurol Psychiatry. 1940;44:398–408.

    Article  Google Scholar 

  52. Hecaen H, Angelergues R, Houillier S. Les varietes cliniques des acalculies aucours des lesions retro-rolandiques: Approche statistique du probleme. Revue Neurologique. 1961;105:85–103.

    PubMed  Google Scholar 

  53. Ramus F. Neuroimaging sheds new light on the phonological deficit in dyslexia. Trends Cogn Sci. 2014;18(6):274–5.

    Article  PubMed  Google Scholar 

  54. Caravolas M, Lervag A, Mousikou P, et al. Common patterns of prediction of literacy development in different alphabetic orthographies. Psychol Sci. 2012;23(6):678–86.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wolf M, Bowers PG. Naming-speed processes and developmental reading disabilities: an introduction to the special issue on the double-deficit hypothesis. J Learn Disabil. 2000;33(4):322–4.

    Article  PubMed  Google Scholar 

  56. He Q, Xue G, Chen C, Chen C, Lu ZL, Dong Q. Decoding the neuroanatomical basis of reading ability: a multivoxel morphometric study. J Neurosci. 2013;33(31):12835–43.

    Article  PubMed  Google Scholar 

  57. Norton ES, Black JM, Stanley LM, et al. Functional neuroanatomical evidence for the double-deficit hypothesis of developmental dyslexia. Neuropsychologia. 2014;61:235–46.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Stein J. The magnocellular theory of developmental dyslexia. Dyslexia. 2001;7(1):12–36.

    Article  PubMed  Google Scholar 

  59. Tallal P. Auditory temporal perception, phonics, and reading disabilities in children. Brain Lang. 1980;9(2):182–98.

    Article  PubMed  Google Scholar 

  60. Tallal P, Stark RE, Kallman C, Mellits D. Developmental dysphasia: relation between acoustic processing deficits and verbal processing. Neuropsychologia. 1980;18(3):273–84.

    Article  PubMed  Google Scholar 

  61. Nicolson RI, Fawcett AJ, Berry EL, Jenkins IH, Dean P, Brooks DJ. Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. Lancet. 1999;353(9165):1662–7.

    Article  Google Scholar 

  62. Nicolson R, Fawcett AJ, Dean P. Dyslexia, development and the cerebellum. Trends Neurosci. 2001;24(9):515–6.

    Article  PubMed  Google Scholar 

  63. Nicolson RI, Fawcett AJ, Dean P. Developmental dyslexia: the cerebellar deficit hypothesis. Trends Neurosci. 2001;24(9):508–11.

    Article  PubMed  Google Scholar 

  64. Olulade OA, Napoliello EM, Eden GF. Abnormal visual motion processing is not a cause of dyslexia. Neuron. 2013;79(1):180–90.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Norton ES, Beach SD, Gabrieli JD. Neurobiology of dyslexia. Curr Opin Neurobiol. 2015;30:73–8.

    Article  PubMed  Google Scholar 

  66. Fiez JA, Petersen SE. Neuroimaging studies of word reading. Proc Natl Acad Sci USA. 1998;95(3):914–21.

    Article  Google Scholar 

  67. Brunswick N, McCrory E, Price CJ, Frith CD, Frith U. Explicit and implicit processing of words and pseudowords by adult developmental dyslexics: a search for Wernicke’s Wortschatz? Brain. 1999;122(Pt 10):1901–17.

    Article  PubMed  Google Scholar 

  68. Paulesu E, Frith U, Snowling M, et al. Is developmental dyslexia a disconnection syndrome? Evidence from PET scanning. Brain. 1996;119(Pt 1):143–57.

    Article  PubMed  Google Scholar 

  69. Cohen L, Dehaene S, Naccache L, et al. The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain. 2000;123(Pt 2):291–307.

    Article  PubMed  Google Scholar 

  70. McCandliss BD, Cohen L, Dehaene S. The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn Sci. 2003;7(7):293–9.

    Article  PubMed  Google Scholar 

  71. Shaywitz SE, Shaywitz BA, Pugh KR, et al. Functional disruption in the organization of the brain for reading in dyslexia. Proc Natl Acad Sci USA. 1998;95(5):2636–41.

    Article  Google Scholar 

  72. Maisog JM, Einbinder ER, Flowers DL, Turkeltaub PE, Eden GF. A meta-analysis of functional neuroimaging studies of dyslexia. Ann NY Acad Sci. 2008;1145:237–59.

    Article  PubMed  Google Scholar 

  73. Richlan F, Kronbichler M, Wimmer H. Functional abnormalities in the dyslexic brain: a quantitative meta-analysis of neuroimaging studies. Hum Brain Mapp. 2009;30(10):3299–308.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Richlan F, Kronbichler M, Wimmer H. Meta-analyzing brain dysfunctions in dyslexic children and adults. Neuroimage. 2011;56(3):1735–42.

    Article  PubMed  Google Scholar 

  75. Richlan F. Developmental dyslexia: dysfunction of a left hemisphere reading network. Front Hum Neurosci. 2012;6:120.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Raschle NM, Chang M, Gaab N. Structural brain alterations associated with dyslexia predate reading onset. Neuroimage. 2011;57(3):742–9.

    Article  PubMed  Google Scholar 

  77. Black JM, Tanaka H, Stanley L, et al. Maternal history of reading difficulty is associated with reduced language-related gray matter in beginning readers. Neuroimage. 2012;59(3):3021–32.

    Article  PubMed  Google Scholar 

  78. Galaburda AM, Kemper TL. Cytoarchitectonic abnormalities in developmental dyslexia: a case study. Ann Neurol. 1979;6(2):94–100.

    Article  PubMed  Google Scholar 

  79. Galaburda AM, Sherman GF, Rosen GD, Aboitiz F, Geschwind N. Developmental dyslexia: four consecutive patients with cortical anomalies. Ann Neurol. 1985;18(2):222–33.

    Article  PubMed  Google Scholar 

  80. Galaburda AM, LoTurco J, Ramus F, Fitch RH, Rosen GD. From genes to behavior in developmental dyslexia. Nat Neurosci. 2006;9(10):1213–7.

    Article  PubMed  Google Scholar 

  81. Ben-Shachar M, Dougherty RF, Wandell BA. White matter pathways in reading. Curr Opin Neurobiol. 2007;17(2):258–70.

    Article  PubMed  Google Scholar 

  82. Beaulieu C, Plewes C, Paulson LA, et al. Imaging brain connectivity in children with diverse reading ability. Neuroimage. 2005;25(4):1266–71.

    Article  PubMed  Google Scholar 

  83. Klingberg T, Hedehus M, Temple E, et al. Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron. 2000;25(2):493–500.

    Article  PubMed  Google Scholar 

  84. Niogi SN, McCandliss BD. Left lateralized white matter microstructure accounts for individual differences in reading ability and disability. Neuropsychologia. 2006;44(11):2178–88.

    Article  PubMed  Google Scholar 

  85. Deutsch GK, Dougherty RF, Bammer R, Siok WT, Gabrieli JD, Wandell B. Children’s reading performance is correlated with white matter structure measured by diffusion tensor imaging. Cortex. 2005;41(3):354–63.

    Article  PubMed  Google Scholar 

  86. Rimrodt SL, Peterson DJ, Denckla MB, Kaufmann WE, Cutting LE. White matter microstructural differences linked to left perisylvian language network in children with dyslexia. Cortex. 2010;46(6):739–49.

    Article  PubMed  Google Scholar 

  87. Dougherty RF, Ben-Shachar M, Deutsch GK, Hernandez A, Fox GR, Wandell BA. Temporal-callosal pathway diffusivity predicts phonological skills in children. Proc Natl Acad Sci USA. 2007;104(20):8556–61.

    Article  Google Scholar 

  88. Tallal P, Merzenich MM, Miller S, Jenkins W. Language learning impairments: integrating basic science, technology, and remediation. Exp Brain Res. 1998;123(1–2):210–9.

    Article  PubMed  Google Scholar 

  89. Dehaene S. The number sense. New York: Oxford University Press; 1997.

    Google Scholar 

  90. Temple E, Posner MI. Brain mechanisms of quantity are similar in 5-year-old children and adults. Proc Natl Acad Sci USA. 1998;95(13):7836–41.

    Article  Google Scholar 

  91. Price GR, Holloway I, Rasanen P, Vesterinen M, Ansari D. Impaired parietal magnitude processing in developmental dyscalculia. Curr Biol. 2007;17(24):R1042–3.

    Article  PubMed  Google Scholar 

  92. Butterworth B, Varma S, Laurillard D. Dyscalculia: from brain to education. Science. 2011;332(6033):1049–53.

    Article  PubMed  Google Scholar 

  93. Piazza M, Facoetti A, Trussardi AN, et al. Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition. 2010;116(1):33–41.

    Article  PubMed  Google Scholar 

  94. Ashkenazi S, Black JM, Abrams DA, Hoeft F, Menon V. Neurobiological underpinnings of math and reading learning disabilities. J Learn Disabil. 2013;46(6):549–69.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rousselle L, Noel MP. Basic numerical skills in children with mathematics learning disabilities: a comparison of symbolic vs non-symbolic number magnitude processing. Cognition. 2007;102(3):361–95.

    Article  PubMed  Google Scholar 

  96. Rotzer S, Loenneker T, Kucian K, Martin E, Klaver P, von Aster M. Dysfunctional neural network of spatial working memory contributes to developmental dyscalculia. Neuropsychologia. 2009;47(13):2859–65.

    Article  PubMed  Google Scholar 

  97. Ashkenazi S, Henik A. A disassociation between physical and mental number bisection in developmental dyscalculia. Neuropsychologia. 2010;48(10):2861–8.

    Article  PubMed  Google Scholar 

  98. Passolunghi MC, Siegel LS. Working memory and access to numerical information in children with disability in mathematics. J Exp Child Psychol. 2004;88(4):348–67.

    Article  PubMed  Google Scholar 

  99. von Aster MG, Shalev RS. Number development and developmental dyscalculia. Dev Med Child Neurol. 2007;49(11):868–73.

    Google Scholar 

  100. Dehaene S, Piazza M, Pinel P, Cohen L. Three parietal circuits for number processing. Cognitive Neuropsychology. 2003;20:487–506.

    Article  PubMed  Google Scholar 

  101. Dehaene S, Molko N, Cohen L, Wilson AJ. Arithmetic and the brain. Curr Opin Neurobiol. 2004;14(2):218–24.

    Article  PubMed  Google Scholar 

  102. Chochon F, Cohen L, van de Moortele PF, Dehaene S. Differential contributions of the left and right inferior parietal lobules to number processing. J Cogn Neurosci. 1999;11(6):617–30.

    Article  PubMed  Google Scholar 

  103. Menon V, Rivera SM, White CD, Glover GH, Reiss AL. Dissociating prefrontal and parietal cortex activation during arithmetic processing. Neuroimage. 2000;12(4):357–65.

    Article  PubMed  Google Scholar 

  104. Eger E, Sterzer P, Russ MO, Giraud AL, Kleinschmidt A. A supramodal number representation in human intraparietal cortex. Neuron. 2003;37(4):719–25.

    Article  PubMed  Google Scholar 

  105. Pinel P, Dehaene S, Riviere D, LeBihan D. Modulation of parietal activation by semantic distance in a number comparison task. Neuroimage. 2001;14(5):1013–26.

    Article  PubMed  Google Scholar 

  106. Ansari D. Effects of development and enculturation on number representation in the brain. Nat Rev Neurosci. 2008;9(4):278–91.

    Article  PubMed  Google Scholar 

  107. Brannon EM. The representation of numerical magnitude. Curr Opin Neurobiol. 2006;16(2):222–9.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Cohen Kadosh R, Lammertyn J, Izard V. Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation. Prog Neurobiol. 2008;84(2):132–47.

    Google Scholar 

  109. Whalen J, McCloskey M, Lesser RP, Gordon B. Localizing arithmetic processes in the brain: evidence from transient deficit during cortical stimulation. J Cogn Neurosci. 1997;9:409–17.

    Article  PubMed  Google Scholar 

  110. Pesenti M, Thioux M, Seron X, De Volder A. Neuroanatomical substrates of arabic number processing, numerical comparison, and simple addition: a PET study. J Cogn Neurosci. 2000;12:461–79.

    Article  PubMed  Google Scholar 

  111. Simon O, Mangin JF, Cohen L, Le Bihan D, Dehaene S. Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron. 2002;33(3):475–87.

    Article  PubMed  Google Scholar 

  112. Dehaene S, Spelke E, Pinel P, Stanescu R, Tsivkin S. Sources of mathematical thinking: behavioral and brain-imaging evidence. Science. 1999;284(5416):970–4.

    Article  PubMed  Google Scholar 

  113. Lee KM, Kang SY. Arithmetic operation and working memory: differential suppression in dual tasks. Cognition. 2002;83(3):B63–8.

    Article  PubMed  Google Scholar 

  114. Piazza M, Mechelli A, Butterworth B, Price CJ. Are subitizing and counting implemented as separate or functionally overlapping processes? Neuroimage. 2002;15(2):435–46.

    Article  PubMed  Google Scholar 

  115. Corbetta M, Kincade JM, Ollinger JM, McAvoy MP, Shulman GL. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci. 2000;3(3):292–7.

    Article  PubMed  Google Scholar 

  116. Mussolin C, De Volder A, Grandin C, Schlogel X, Nassogne MC, Noel MP. Neural correlates of symbolic number comparison in developmental dyscalculia. 20100305 DCOM-20100527(1530-8898 (Electronic)).

    Google Scholar 

  117. Kaufmann L, Vogel SE, Starke M, Kremser C, Schocke M, Wood G. Developmental dyscalculia: compensatory mechanisms in left intraparietal regions in response to nonsymbolic magnitudes. 20090824 DCOM-20121002(1744-9081 (Electronic)).

    Google Scholar 

  118. Jolles D, Ashkenazi S, Kochalka J, et al. Parietal hyper-connectivity, aberrant brain organization, and circuit-based biomarkers in children with mathematical disabilities. Dev Sci. 2016;19(4):613–31.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Rotzer S, Kucian K, Martin E, von Aster M, Klaver P, Loenneker T. Optimized voxel-based morphometry in children with developmental dyscalculia. Neuroimage. 2008;39(1):417–22.

    Article  PubMed  Google Scholar 

  120. Rykhlevskaia E, Uddin LQ, Kondos L, Menon V. Neuroanatomical correlates of developmental dyscalculia: combined evidence from morphometry and tractography. Front Hum Neurosci. 2009;3:51.

    Google Scholar 

  121. Fias W, Menon V, Szucs D. Core systems of number. Trends Neurosci Educ. 2014;2(2):43–7.

    Article  Google Scholar 

  122. Iuculano T. Neurocognitive accounts of developmental dyscalculia and its remediation. Prog Brain Res. 2016;227:305–33.

    Article  PubMed  Google Scholar 

  123. Peters L, De Smedt B. Arithmetic in the developing brain: a review of brain imaging studies. Dev Cogn Neurosci. 2017.

    Google Scholar 

  124. Abbott R, Berninger V. Structural equation modeling of relationships among developmental skills and writing skills in primary and intermediate grade writers. J Educ Psychol. 1993;85(3):478–508.

    Article  Google Scholar 

  125. Berninger VW. Highlights of programmatic, interdisciplinary research on writing. Learn Disabil Res Pract. 2009;24(2):69–80.

    Article  Google Scholar 

  126. Berninger VW, Abbott RD, Jones J, et al. Early development of language by hand: composing, reading, listening, and speaking connections; three letter-writing modes; and fast mapping in spelling. Dev Neuropsychol. 2006;29(1):61–92.

    Article  PubMed  Google Scholar 

  127. Berninger VW, Abbott RD, Abbott SP, Graham S, Richards T. Writing and reading: connections between language by hand and language by eye. J Learn Disabil. 2002;35(1):39–56.

    Article  PubMed  Google Scholar 

  128. Basso A, Taborelli A, Vignolo LA. Dissociated disorders of speaking and writing in aphasia. J Neurol Neurosurg Psychiatry. 1978;41(6):556–63.

    Article  Google Scholar 

  129. Henry ML, Beeson PM, Stark AJ, Rapcsak SZ. The role of left perisylvian cortical regions in spelling. Brain Lang. 2007;100(1):44–52.

    Article  PubMed  Google Scholar 

  130. Agraphia Roeltgen D. In: Valenstein KMHE, editor. Clinical neuropsychology. New York: Oxford University Press; 2003. p. 75–96.

    Google Scholar 

  131. Purcell JJ, Turkeltaub PE, Eden GF, Rapp B. Examining the central and peripheral processes of written word production through meta-analysis. Front Psychol. 2011;2:239.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Planton S, Jucla M, Roux FE, Demonet JF. The “handwriting brain”: a meta-analysis of neuroimaging studies of motor versus orthographic processes. Cortex. 2013;49(10):2772–87.

    Article  PubMed  Google Scholar 

  133. Richards TL, Berninger VW, Stock P, Altemeier L, Trivedi P, Maravilla K. Functional magnetic resonance imaging sequential-finger movement activation differentiating good and poor writers. J Clin Exp Neuropsychol. 2009;1–17.

    Google Scholar 

  134. Richards TL, Berninger VW, Stock P, Altmeier L, Trivedi P, Maravilla KR. Differences between good and poor child writers on fMRI contrasts for writing newly taught and highly practiced letter forms. Read Writ. 2011;24(5):493.

    Article  Google Scholar 

  135. Richards TL, Grabowski TJ, Boord P, et al. Contrasting brain patterns of writing-related DTI parameters, fMRI connectivity, and DTI-fMRI connectivity correlations in children with and without dysgraphia or dyslexia. Neuroimage Clin. 2015;8:408–21.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Shaywitz SE, Morris R, Shaywitz BA. The education of dyslexic children from childhood to young adulthood. Annu Rev Psychol. 2008;59:451–75.

    Article  PubMed  Google Scholar 

  137. Shaywitz SE, Shaywitz BA, Fulbright RK, et al. Neural systems for compensation and persistence: young adult outcome of childhood reading disability. Biol Psychiatry. 2003;54(1):25–33.

    Article  PubMed  Google Scholar 

  138. Foorman BR, Francis DJ, Shaywitz SE, Shaywitz BA, Fletcher JM. The case for early reading intervention. In: Blachman BA, editor. Foundations of reading acquisition and dyslexia: implications for early intervention. Mahwah, NJ: Lawrence Erbaum Associates Publishers; 1997. p. 243–64.

    Google Scholar 

  139. Torgesen JK, Alexander AW, Wagner RK, Rashotte CA, Voeller KK, Conway T. Intensive remedial instruction for children with severe reading disabilities: immediate and long-term outcomes from two instructional approaches. J Learn Disabil. 2001;34(1):33–58, 78.

    Article  Google Scholar 

  140. Hecht SA, Torgesen JK, Wagner RK, Rashotte CA. The relations between phonological processing abilities and emerging individual differences in mathematical computation skills: a longitudinal study from second to fifth grades. J Exp Child Psychol. 2001;79(2):192–227.

    Article  Google Scholar 

  141. Langenbereg DN. Report of the national reading panel. Washington DC: National Institute of Child Health and Human Development 2000. Report No.: NIH Pub. No. 00-4754.

    Google Scholar 

  142. Barquero LA, Davis N, Cutting LE. Neuroimaging of reading intervention: a systematic review and activation likelihood estimate meta-analysis. PLoS One. 2014;9(1):e83668.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Hoeft F, McCandliss BD, Black JM, et al. Neural systems predicting long-term outcome in dyslexia. Proc Natl Acad Sci USA. 2011;108(1):361–6.

    Article  Google Scholar 

  144. Baker S, Gersten R, Lee D. A synthesis of empirical research on teaching mathematics to low-achieving students. The Elem Sch J. 2002;103(1):51–73.

    Article  Google Scholar 

  145. Fuchs LS, Seethaler PM, Powell SR, Fuchs D, Hamlett CL, Fletcher JM. Effects of preventative tutoring on the mathematical problem solving of third-grade students with math and reading difficulties. Except Child. 2008;74(2):155–73.

    PubMed  PubMed Central  Google Scholar 

  146. Fuchs LS, Powell SR, Seethaler PM, et al. The effects of strategic counting instruction, with and without deliberate practice, on number combination skill among students with mathematics difficulties. Learn Individ Differ. 2010;20(2):89–100.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Fuchs LS, Geary DC, Compton DL, et al. Effects of first-grade number knowledge tutoring with contrasting forms of practice. J Educ Psychol. 2013;105(1):58–77.

    Article  PubMed  Google Scholar 

  148. Fuchs LS, Powell SR, Seethaler PM, et al. Remediating number combination and word problem deficits among students with mathematics difficulties: a randomized control trial. J Educ Psychol. 2009;101(3):561–76.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Iuculano T, Rosenberg-Lee M, Richardson J, et al. Cognitive tutoring induces widespread neuroplasticity and remediates brain function in children with mathematical learning disabilities. Nat Commun. 2015;6:8453.

    Google Scholar 

  150. Jolles D, Supekar K, Richardson J, et al. Reconfiguration of parietal circuits with cognitive tutoring in elementary school children. Cortex. 2016;83:231–45.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Williams KJ, Walker MA, Vaughn S, Wanzek J. A synthesis of reading and spelling interventions and their effects on spelling outcomes for students with learning disabilities. J Learn Disabil. 2017;50(3):286–97.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Wanzek J, Vaughn S, Wexler J, Swanson EA, Edmonds M, Kim AH. A synthesis of spelling and reading interventions and their effects on the spelling outcomes of students with LD. J Learn Disabil. 2006;39(6):528–43.

    Article  PubMed  Google Scholar 

  153. Tanimoto S, Thompson R, Berninger VW, Nagy W, Abbott RD. Computerized writing and reading instruction for students in grades 4 to 9 with specific learning disabilities affecting written language. J Comput Assist Learn. 2015;31(6):671–89.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Richards TL, Berninger VW, Yagle KJ, Abbott RD, Peterson DJ. Changes in DTI diffusivity and fMRI connectivity cluster coefficients for students with and without specific learning disabilities in written language: Brain’s response to writing instruction. J Nat Sci. 2017;3(4).

    Google Scholar 

  155. Hale JB, Fiorello CA. School neuropsychology: a practitioner’s handbook. New York: The Guilford Press; 2004.

    Google Scholar 

  156. Lovett BJ, Lewandowski LJ. Testing accommodations for students with disabilities: research-based practice. American Psychological Association; 2015.

    Google Scholar 

  157. Mascheretti S, De Luca A, Trezzi V, et al. Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Transl Psychiatry. 2017;7(1):e987.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayle K. Deutsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deutsch, G.K., Davis, R.N. (2019). Learning Disorders. In: Armstrong, C., Morrow, L. (eds) Handbook of Medical Neuropsychology. Springer, Cham. https://doi.org/10.1007/978-3-030-14895-9_15

Download citation

Publish with us

Policies and ethics