Skip to main content

Wetlands as Biogeochemical Hotspots Affecting Water Quality in Catchments

  • Chapter
  • First Online:
Wetlands: Ecosystem Services, Restoration and Wise Use

Part of the book series: Ecological Studies ((ECOLSTUD,volume 238))

Abstract

Water quality in freshwater lakes and coastal areas has deteriorated in many densely populated areas with increasingly intensive agriculture. For example, eutrophication of aquatic environments has become a major environmental problem in large parts of the world. Biogeochemical transformations occurring in wetlands generally result in reduced nutrient content of water, but quite commonly these ecosystems have been drained or filled to create new forest and arable land. In recent decades efforts have been made to compensate for the losses of natural wetlands by creating new wetlands or restore drained wetlands. However, the large variation in measured nutrient removal rates in such wetlands has made it difficult to assess the effectiveness of such interventions. In this chapter we discuss the role of created wetlands in regulating water quality at the catchment scale. First, we pay attention to a recent systematic review of nitrogen and phosphorus removal in single wetlands in boreal, temperate and sub-tropical regions. Second, in a more focused case study, we evaluate the efficacy of large numbers of constructed wetlands in southern Sweden to remove nutrients from runoff in the context of the eutrophication of the Baltic Sea. The removal efficiency of total nitrogen and total phosphorus in single wetlands is in general relatively high (median values are 37% and 46%, respectively). However, to make a significant difference on a catchment scale, more and larger wetland areas need to be created, and they need to be wisely placed where nutrient loading rates are high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ardon M, Morse JL, Doyle MW, Bernhardt ES (2010) The water quality consequences of restoring wetland hydrology to a large agricultural watershed in the southeastern coastal plain. Ecosystems 13(7):1060–1078

    Article  CAS  Google Scholar 

  • Arheimer B, Pers BC (2017) Lessons learned? Effects of nutrient reductions from constructing wetlands in 1996–2006 across Sweden. Ecol Eng 103(Part B):404–414. https://doi.org/10.1016/j.ecoleng.2016.01.088

    Article  Google Scholar 

  • Bass KL, Evans RO (2000) Water quality improvement by a small in-stream constructed wetland in North Carolina’s coastal plain. Paper presented at the watershed management and operations management 2000, Fort Collins, CO, USA

    Google Scholar 

  • Bodin H, Mietto A, Ehde PM, Persson J, Weisner SEB (2012) Tracer behaviour and analysis of hydraulics in experimental free water surface wetlands. Ecol Eng 49:201–211

    Article  Google Scholar 

  • Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Random-effects model. In: Introduction to meta-analysis. Wiley, Chichester, pp 69–75. https://doi.org/10.1002/9780470743386.ch12

    Chapter  Google Scholar 

  • Braskerud BC (2002) Factors affecting phosphorus retention in small constructed wetlands treating agricultural non-point source pollution. Ecol Eng 19(1):41–61

    Article  Google Scholar 

  • Braskerud BC, Tonderski KS, Wedding B, Bakke R, Blankenberg AGB, Ulen B, Koskiaho J (2005) Can constructed wetlands reduce the diffuse phosphorus loads to eutrophic water in cold temperate regions? J Environ Qual 34(6):2145–2155. https://doi.org/10.2134/jeq2004.0466

    Article  CAS  PubMed  Google Scholar 

  • Brinson MM, Eckles SD (2011) U.S. Department of Agriculture conservation program and practice effects on wetland ecosystem services: a synthesis. Ecol Appl 21(3):S116–S127

    Article  Google Scholar 

  • Carleton JN, Grizzard TJ, Godrej AN, Post HE (2001) Factors affecting the performance of stormwater treatment wetlands. Water Res 35(6):1552–1562

    Article  CAS  Google Scholar 

  • CEE (2013) Guidelines for systematic review and evidence synthesis in environmental management. Version 4.2. CEE. www.environmentalevidence.org/Documents/Guidelines/Guidelines4.2.pdf

  • Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetl Ecol Manag 17(1):71–84

    Article  Google Scholar 

  • Farber S, Costanza R, Childers DL, Erickson J, Gross K, Grove M, Hopkinson CS, Kahn J, Pincetl S, Troy A, Warren P, Wilson M (2006) Linking ecology and economics for ecosystem management. Bioscience 56(2):121–133

    Article  Google Scholar 

  • Fleischer S, Gustafson A, Joelsson A, Pansar J, Stibe L (1994) Nitrogen removal in created ponds. Ambio 23:349–357

    Google Scholar 

  • Hansson A, Pedersen E, Weisner SEB (2012) Landowners’ incentives for constructing wetlands in an agricultural area in south Sweden. J Environ Manag 113(0):271–278. https://doi.org/10.1016/j.jenvman.2012.09.008

    Article  Google Scholar 

  • Healy M, Cawley AM (2002) Nutrient processing capacity of a constructed wetland in western Ireland. J Environ Qual 31:1739–1747

    Article  CAS  Google Scholar 

  • Hoffmann CC, Heiberg L, Audet J, Schonfeldt B, Fuglsang A, Kronvang B, Ovesen NB, Kjaergaard C, Hansen HCB, Jensen HS (2012) Low phosphorus release but high nitrogen removal in two restored riparian wetlands inundated with agricultural drainage water. Ecol Eng 46:75–87

    Article  Google Scholar 

  • Jansson M, Andersson R, Berggren H, Leonardson L (1994) Wetlands and lakes and nitrogen traps. Ambio 23:320–325

    Google Scholar 

  • Jenkins WA, Murray BC, Kramer RA, Faulkner SP (2010) Valuing ecosystem services from wetlands restoration in the Mississippi Alluvial Valley. Ecol Econ 69:1051–1061

    Article  Google Scholar 

  • Jeppesen E, Jensen JP, Jensen C, Faafeng B, Hessen DO, Sondergaard M, Lauridsen T, Brettum P, Christoffersen K (2003) The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the arctic. Ecosystems 6(4):313–325

    Article  CAS  Google Scholar 

  • Jeppesen E, Kronvang B, Meerhoff M, Sondergaard M, Hansen KM, Andersen HE, Lauridsen TL, Liboriussen L, Beklioglu M, Ozen A, Olesen JE (2009) Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J Environ Qual 38(5):1930–1941

    Article  CAS  Google Scholar 

  • Jeppesen E, Moss B, Bennion H, Carvalho L, DeMeester L, Feuchtmayr H, Friberg N, Gessner MO, Hefting M, Lauridsen TL, Liboriussen L, Malmquist HJ, May L, Meerhoff M, Olafsson JS, Soons MB, Verhoeven JTA (2010) Interaction of climate change and eutrophication. In: Kernan M, Battarbee RW, Moss B (eds) Climate change impacts on freshwater ecosystems. Blackwell Publishing, London, pp 119–151

    Chapter  Google Scholar 

  • Jeppesen E, Kronvang B, Olesen JE, Audet J, Sondergaard M, Hoffmann CC, Andersen HE, Lauridsen TL, Liboriussen L, Larsen SE, Beklioglu M, Meerhoff M, Ozen A, Ozkan K (2011) Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 663(1):1–21

    Article  CAS  Google Scholar 

  • Johannesson KM, Kynkäänniemi P, Ulén B, Weisner SEB, Tonderski KS (2015) Phosphorus and particle retention in constructed wetlands – a catchment comparison. Ecol Eng 80:20–31. https://doi.org/10.1016/j.ecoleng.2014.08.014

    Article  Google Scholar 

  • Johannesson KM, Tonderski KS, Ehde PM, Weisner SEB (2016) Temporal phosphorus dynamics affecting retention estimates in agricultural constructed wetlands. Ecol Eng 103:436–445. https://doi.org/10.1016/j.ecoleng.2015.11.050

    Article  Google Scholar 

  • Johnsson H, Larsson M, Lindsjö A, Mårtensson K, Persson K, Torstensson G (2008) Läckage av näringsämnen från svensk åkermark (Nutrient leakage from agricultural land in Sweden), Stockholm

    Google Scholar 

  • Jordbruksverket (2004) Kvalitetskriterier för våtmarker i odlingslandskapet. Kriterier för rening av växtnäring med beaktande av biologisk mångfald och kulturmiljö, vol 2004. Swedish Board of Agriculture (Jordbruksverket), Jönköping

    Google Scholar 

  • Kadlec RH (2005) Nitrogen farming for pollution control. J Environ Sci Health A Tox Hazard Subst Environ Eng 40:1307–1330. https://doi.org/10.1081/ese-200055836

    Article  CAS  PubMed  Google Scholar 

  • Kadlec RH, Knight RL (1996) Treatment wetlands. Lewis Publishers, New York, NY

    Google Scholar 

  • Kieckbusch JJ, Schrautzer J (2007) Nitrogen and phosphorus dynamics of a re-wetted shallow-flooded peatland. Sci Total Environ 380(1–3):3–12

    Article  CAS  Google Scholar 

  • Kronvang B, Bechmann M, Pedersen ML, Flynn N (2003) Phosphorus dynamics and export in streams draining micro-catchments: development of empirical models. J Plant Nutr Soil Sci 166(4):469–474. https://doi.org/10.1002/jpln.200321164

    Article  CAS  Google Scholar 

  • Land M, Granéli W, Grimvall A, Hoffmann CC, Mitsch WJ, Tonderski KS, Verhoeven JTA (2013) How effective are created or restored freshwater wetlands for nitrogen and phosphorus removal? A systematic review protocol. Environ Evid 2:1–8. https://doi.org/10.1186/2047-2382-2-16

    Article  Google Scholar 

  • Land M, Granéli W, Grimvall A, Hoffmann CC, Mitsch WJ, Tonderski KS, Verhoeven JTA (2016) How effective are created or restored freshwater wetlands for nitrogen and phosphorus removal? A systematic review. Environ Evid 5(1):9. https://doi.org/10.1186/s13750-016-0060-0

    Article  Google Scholar 

  • Leonardson L (1994) Våtmarker som kvävefällor, Rapport 4176. Swedish Environmental Protection Agency, Stockholm

    Google Scholar 

  • Mitsch WJ (1990) Wetlands for the control of nonpoint source pollution. Ohio EPA, Columbus, OH, pp 1–91

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2015) Wetlands, vol 5. Wiley, New York

    Google Scholar 

  • Mitsch WJ, Day JW, Gilliam JW, Groffman PM, Hey DL, Randall GW, Wang NM (2001) Reducing nitrogen loading to the Gulf of Mexico from the Mississippi river basin: strategies to counter a persistent ecological problem. Bioscience 51(5):373–388

    Article  Google Scholar 

  • Mitsch WJ, Day JW, Zhang L, Lane RR (2005) Nitrate-nitrogen retention in wetlands in the Mississippi river basin. Ecol Eng 24(4):267–278

    Article  Google Scholar 

  • Rabalais NN, Turner RE, Dortch Q, Wiseman WJ Jr, Sen Gupta BK (1996) Nutrient changes in the Mississippi river and system responses on the adjacent continental shelf. Estuaries 19(2B):386–407

    Article  CAS  Google Scholar 

  • Shoo LP, O’Mara J, Perhans K, Rhodes JR, Runting RK, Schmidt S, Traill LW, Weber LC, Wilson KA, Lovelock CE (2014) Moving beyond the conceptual: specificity in regional climate change adaptation actions for biodiversity in South East Queensland, Australia. Reg Environ Chang 14(2):435–447

    Article  Google Scholar 

  • Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems – a global problem. Environ Sci Pollut Res 10:126–139. https://doi.org/10.1065/espr2002.12.142

    Article  CAS  Google Scholar 

  • Strand JA, Weisner SEB (2013) Effects of wetland construction on nitrogen transport and species richness in the agricultural landscape—experiences from Sweden. Ecol Eng 56:14–25

    Article  Google Scholar 

  • Svensson JM, Strand J, Sahlén G, Weisner S (2004) Rikare mångfald och mindre kväve. Utvärdering av våtmarker skapade med stöd av lokala investeringsprogram och landsbygdsutvecklingsstöd (Enhanced biodiversity and reduced amount of nitrogen). Naturvårdsverket Rapport. Naturvårdsverket (Swedish Environmental Protection Agency), Stockholm

    Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65. https://doi.org/10.1016/j.scitotenv.2006.09.014

    Article  CAS  PubMed  Google Scholar 

  • Vymazal J, Kroepfelova L (2009) Removal of nitrogen in constructed wetlands with horizontal sub-surface flow: a review. Wetlands 29:1114–1124

    Article  Google Scholar 

  • Weisner SEB, Johannesson KM, Tonderski KS (2015) Näringsavskiljning i anlagda våtmarker i jordbruket. Analys av mätresultat och effekter av landsbygdsprogrammet (trans: assessment. NriawcitRDpMdeare). Rapport, vol 2015. Jordbruksverket – Swedish Board of Agriculture

    Google Scholar 

  • Weisner SEB, Johannesson K, Thiere G, Svengren H, Ehde PM, Tonderski KS (2016) National large-scale wetland creation in agricultural areas—potential versus realized effects on nutrient transports. Water 8(11):544. https://doi.org/10.3390/w8110544

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Land .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Land, M., Tonderski, K., Verhoeven, J.T.A. (2019). Wetlands as Biogeochemical Hotspots Affecting Water Quality in Catchments. In: An, S., Verhoeven, J. (eds) Wetlands: Ecosystem Services, Restoration and Wise Use. Ecological Studies, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-030-14861-4_2

Download citation

Publish with us

Policies and ethics