Skip to main content

Modulation Representations for Speech and Music

  • Chapter
  • First Online:
Timbre: Acoustics, Perception, and Cognition

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 69))

Abstract

The concept of modulation has been ubiquitously linked to the notion of timbre. Modulation describes the variations of an acoustic signal (both spectrally and temporally) that shape how the acoustic energy fluctuates as the signal evolves over time. These fluctuations are largely shaped by the physics of a sound source or acoustic event and, as such, are inextricably reflective of the sound identity or its timbre. How one extracts these variations or modulations remains an open research question. The manifestation of signal variations not only spans the time and frequency axes but also bridges various resolutions in the joint spectrotemporal space. The additional variations driven by linguistic and musical constructs (e.g., semantics, harmony) further compound the complexity of the spectrotemporal space. This chapter examines common techniques that are used to explore the modulation space in such signals, which include signal processing, psychophysics, and neurophysiology. The perceptual and neural interpretations of modulation representations are discussed in the context of biological encoding of sounds in the central auditory system and the psychophysical manifestations of these cues. This chapter enumerates various representations of modulations, including the signal envelope, the modulation spectrum, and spectrotemporal receptive fields. The review also examines the effectiveness of these representations for understanding how sound modulations convey information to the listener about the timbre of a sound and, ultimately, how sound modulations shape the complex perceptual experience evoked by everyday sounds such as speech and music.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anden J, Mallat S (2014) Deep scattering spectrum. IEEE Trans Signal Process 62:4114–4128. https://doi.org/10.1109/TSP.2014.2326991

    Article  Google Scholar 

  • Arai T, Greenberg S (1998) Speech intelligibility in the presence of cross-channel spectral asynchrony. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, p 933–939

    Google Scholar 

  • Arai T, Pavel M, Hermansky H, Avendano C (1999) Syllable intelligibility for temporally filtered LPC cepstral trajectories. J Acoust Soc Am 105:2783–2791

    Article  CAS  PubMed  Google Scholar 

  • Athineos M, Ellis DPW (2003) Frequency-domain linear prediction for temporal features. IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU):261–266

    Google Scholar 

  • Attias H, Schreiner CE (1997) Temporal low-order statistics of natural sounds. In: Adv. Neural Inf. Proc. sys. (NIPS). MIT Press: Cambridge, MA, p 27–33

    Google Scholar 

  • Carlin MA, Patil K, Nemala SK, Elhilali M (2012) Robust phoneme recognition based on biomimetic speech contours. In: Proceedings of the 13th annual conference of the international speech communication association (INTERSPEECH), p 1348–1351

    Google Scholar 

  • Chen F, Jokinen K (2010) Speech technology: theory and applications, 1st edn. Springer, New York

    Book  Google Scholar 

  • Chi T, Gao Y, Guyton MC, Ru P, Shamma S (1999) Spectro-temporal modulation transfer functions and speech intelligibility. J Acoust Soc Am 106:2719–2732

    Article  CAS  PubMed  Google Scholar 

  • Chi T, Ru P, Shamma SA (2005) Multiresolution spectrotemporal analysis of complex sounds. J Acoust Soc Am 118:887–906

    Article  PubMed  Google Scholar 

  • Childers DG, Skinner DP, Kemerait RC (1977) The cepstrum: a guide to processing. Proc IEEE 65:1428–1443. https://doi.org/10.1109/PROC.1977.10747

    Article  Google Scholar 

  • Choi JE, Won JH, Kim CH, Cho Y-S, Hong SH, Moon IJ (2018) Relationship between spectrotemporal modulation detection and music perception in normal-hearing, hearing-impaired, and cochlear implant listeners. Sci Rep. 8(1). https://doi.org/10.1038/s41598-017-17350-w

  • Chowning JM (1973) The synthesis of complex audio spectra by means of frequency modulation. J Audio Eng Soc 21:1–10

    Google Scholar 

  • Cohen L (1995) Time-frequency signal analysis, 1st edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Collins N (2009) Introduction to computer music, 1st edn. Wiley, Chichester/West Sussex

    Google Scholar 

  • Croghan NBH, Duran SI, Smith ZM (2017) Re-examining the relationship between number of cochlear implant channels and maximal speech intelligibility. J Acoust Soc Am 142:EL537–EL543. https://doi.org/10.1121/1.5016044

    Article  PubMed  Google Scholar 

  • deBoer E (1976) On the “residue” and auditory pitch perception. In: Keidel W, Neff D (eds) Auditory system (handbook of sensory physiology). Springer, Berlin, pp 479–583

    Google Scholar 

  • Depireux DA, Elhilali M (eds) (2013) Handbook of modern techniques in auditory cortex. First. Nova Science Publishers, Inc., New York

    Google Scholar 

  • Depireux DA, Simon JZ, Klein DJ, Shamma SA (2001) Spectro-temporal response field characterization with dynamic ripples in ferret primary auditory cortex. J Neurophysiol 85:1220–1234

    Article  CAS  PubMed  Google Scholar 

  • Ding N, Patel AD, Chen L, Butler H, Luo C, Poeppel D (2017) Temporal modulations in speech and music. Neurosci Biobehav Rev 81:181–187

    Article  PubMed  Google Scholar 

  • Divenyi P, Greenberg S, Meyer G (eds) (2006) Dynamics of speech production and perception. IOS Press, Amsterdam, p 388

    Google Scholar 

  • Drullman R, Festen JM, Plomp R (1994) Effect of temporal envelope smearing on speech reception. J Acoust Soc Am 95:1053–1064

    Article  CAS  PubMed  Google Scholar 

  • Dudley H (1939) Remaking speech. J Acoust Soc Am 11:169–177

    Article  Google Scholar 

  • Dudley H (1940) The carrier nature of speech. Bell Syst TechJ 19:495–513

    Article  Google Scholar 

  • Eggermont JJ (2001) Between sound and perception: reviewing the search for a neural code. Hear Res 157:1–42

    Article  CAS  PubMed  Google Scholar 

  • Elhilali M (2017) Modeling the cocktail party problem. In: Middlebrooks J, Simon JZ, Popper AN, Fay RR (eds) The auditory system at the cocktail party. Springer, New York, pp 111–135

    Chapter  Google Scholar 

  • Elhilali M, Shamma S (2008) Information-bearing components of speech intelligibility under babble-noise and bandlimiting distortions. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP), p 4205–4208

    Google Scholar 

  • Elhilali M, Chi T, Shamma SA (2003) A spectro-temporal modulation index (STMI) for assessment of speech intelligibility. Speech Commun 41:331–348. https://doi.org/10.1016/S0167-6393(02)00134-6

    Article  Google Scholar 

  • Elhilali M, Shamma SA, Simon JZ, Fritz JB (2013) A linear systems view to the concept of STRF. In: Depireux D, Elhilali M (eds) Handbook of modern techniques in auditory cortex. Nova Science Pub Inc, New York, pp 33–60

    Google Scholar 

  • Elliott TM, Theunissen FE (2009) The modulation transfer function for speech intelligibility. PLoS Comput Biol 5:e1000302

    Article  PubMed  PubMed Central  Google Scholar 

  • Elliott TM, Hamilton LS, Theunissen FE (2013) Acoustic structure of the five perceptual dimensions of timbre in orchestral instrument tones. J Acoust Soc Am 133(1):389–404. https://doi.org/10.1121/1.4770244

    Article  PubMed  PubMed Central  Google Scholar 

  • Escabi MA, Read HL (2003) Representation of spectrotemporal sound information in the ascending auditory pathway. Biol Cybern 89:350–362

    Article  PubMed  Google Scholar 

  • Freeman R (2004) Telecommunication system engineering, fourth edn. Wiley-Interscience, New York

    Book  Google Scholar 

  • Friesen LM, Shannon RV, Baskent D, Wang X (2001) Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J Acoust Soc Am 110:1150–1163

    Article  CAS  PubMed  Google Scholar 

  • Ganapathy S, Thomas S, Hermansky H (2010) Robust spectro-temporal features based on autoregressive models of Hilbert envelopes. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP), p 4286–4289

    Google Scholar 

  • Gill P, Zhang J, Woolley S, Fremouw T, Theunissen F (2006) Sound representation methods for spectro-temporal receptive field estimation. J Comput Neurosci 21:5. https://doi.org/10.1007/s10827-006-7059-4

    Article  PubMed  Google Scholar 

  • Glasberg BR, Moore BC (1992) Effects of envelope fluctuations on gap detection. Hear Res 64:81–92

    Article  CAS  PubMed  Google Scholar 

  • Gosselin F, Schyns PG (2001) Bubbles: a technique to reveal the use of information in recognition tasks. Vis Res 41(17):2261–2271. https://doi.org/10.1016/S0042-6989(01)00097-9

    Article  CAS  PubMed  Google Scholar 

  • Greenberg S (2004) Temporal properties of spoken language. In: Proceedings of the international congress on acoustics. Kyoto, Japan, p 441–445

    Google Scholar 

  • Greenberg S, Arai T (2001) The relation between speech intelligibility and the complex modulation spectrum. In: Proceedings of the 7th European conference on speech communication and technology (Eurospeech-2001), p 473–476

    Google Scholar 

  • Grochenig K (2001) Foundations of time-frequency analysis. Birkhauser, Boston

    Book  Google Scholar 

  • Hemery E, Aucouturier J-J (2015) One hundred ways to process time, frequency, rate and scale in the central auditory system: a pattern-recognition meta-analysis. Front Comput Neurosci 9(80). https://doi.org/10.3389/fncom.2015.00080

  • Hepworth-Sawyer R, Hodgson J (2016) Mixing music, First edn. Routledge, New York/London

    Book  Google Scholar 

  • Hermansky H, Sharma S (1999) Temporal patterns (TRAPs) in ASR of noisy speech. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP), p 292

    Google Scholar 

  • Hintz M (2016) Digital speech technology:pProcessing, recognition and synthesis. Willford Press

    Google Scholar 

  • Houtgast T, Steeneken HJM (1985) A review of MTF concept in room acoustics and its use for estimating speech intelligibility in auditoria. J Acoust Soc Am 77:1069–1077

    Article  Google Scholar 

  • Houtsma AJM, Smurzynski J (1990) Pitch identification and discrimination for complex tones with many harmonics. J Acoust Soc Am 87:304–310

    Article  Google Scholar 

  • Ibrahim R, Bruce I (2010) Effects of peripheral tuning on the auditory nerve’s representation of speech envelope and temporal fine structure cues. In: Lopez-Poveda EA, Palmer AR, MR (eds) The neurophysiological bases of auditory perception. Springer, New York, pp 429–438

    Chapter  Google Scholar 

  • Jepsen ML, Ewert SD, Dau T (2008) A computational model of human auditory signal processing and perception. J Acoust Soc Am 124:422–438

    Article  PubMed  Google Scholar 

  • Katz M (2006) The violin: a research and information guide. Routledge Taylor and Francis Group, London/New York

    Book  Google Scholar 

  • Kingsbury B, Morgan N, Greenberg S (1998) Robust speech recognition using the modulation spectrogram. Speech Commun 25:117–132

    Article  Google Scholar 

  • Kleinschmidt M (2003) Localized spectro-temporal features for automatic speech recognition. In: Proceedings of Eurospeech, p 2573–2576

    Google Scholar 

  • Kowalski N, Depireux DA, Shamma SA (1996) Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. J Neurophysiol 76:3503–3523

    Article  CAS  PubMed  Google Scholar 

  • Leaver AM, Rauschecker JP (2010) Cortical representation of natural complex sounds: effects of acoustic features and auditory object category. J Neurosci 30:7604–7612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Li, Les Atlas (2005) Properties for modulation spectral filtering. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing (ICASSP), p 521–524

    Google Scholar 

  • Liégeois-Chauvel C, Peretz I, Babaï M, Laguitton V, Chauvel P (1998) Contribution of different cortical areas in the temporal lobes to music processing. Brain 121:1853–1867. https://doi.org/10.1093/brain/121.10.1853

    Article  PubMed  Google Scholar 

  • Liu RC, Miller KD, Merzenich MM, Schreiner CE (2003) Acoustic variability and distinguishability among mouse ultrasound vocalizations. J Acoust Soc Am 114:3412–3422

    Article  PubMed  Google Scholar 

  • Lyons RG (2011) Understanding digital signal processing, third edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • McAuley J, Ming J, Stewart D, Hanna P (2005) Subband correlation and robust speech recognition. IEEE Trans Speech Audio Process 13:956–963. https://doi.org/10.1109/TSA.2005.851952

    Article  Google Scholar 

  • McDermott HJ (2004) Music perception with cochlear implants: a review. Trends Amplif 8:49–82

    Article  PubMed  PubMed Central  Google Scholar 

  • Meredith D (ed) (2016) Computational music analysis. Springer International Publishing, Cham

    Google Scholar 

  • Meyer B, Ravuri S, Schaedler M, Morgan N (2011) Comparing different flavors of spectro-temporal features for ASR. In: Proceedings of the 12th annual conference of the international speech communication association (INTERSPEECH), p 1269–1272

    Google Scholar 

  • Miller LM, Escabí MA, Read HL, Schreiner CE, Escabi MA, Read HL, Schreiner CE (2002) Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. J Neurophysiol 87:516–527. https://doi.org/10.1152/jn.00395.2001

    Article  PubMed  Google Scholar 

  • Moore BCJ (2003) An introduction to the psychology of hearing, 5th edn. Emerald Group Publishing Ltd, Leiden

    Google Scholar 

  • Moore BCJ (2014) Auditory processing of temporal fine structure: Effects of age and hearing loss, 1st edn. World Scientific Publishing, Co, Hackensack/New Jersey

    Book  Google Scholar 

  • Morgan N, Chen BY, Zhu Q, Stolcke A (2004) Trapping conversational speech: extending TRAP/tandem approaches to conversational telephone speech recognition. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP), p 40 vol.1

    Google Scholar 

  • Moritz N, Anemuller J, Kollmeier B (2011) Amplitude modulation spectrogram based features for robust speech recognition in noisy and reverberant environments. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP), p 5492–5495

    Google Scholar 

  • Müller M (2015) Fundamentals of music processing. Springer International Publishing, Cham

    Book  Google Scholar 

  • Muller M, Ellis DPW, Klapuri A, Richard G (2011) Signal processing for music analysis. J IEEE, Sel Top Signal Process 5:1088–1110. https://doi.org/10.1109/JSTSP.2011.2112333

    Article  Google Scholar 

  • Nemala SK, Patil K, Elhilali M (2013) A multistream feature framework based on bandpass modulation filtering for robust speech recognition. IEEE Trans Audio Speech Lang Process 21:416–426. https://doi.org/10.1109/TASL.2012.2219526

    Article  PubMed  Google Scholar 

  • Norman-Haignere S, Kanwisher NG, McDermott JH (2015) Distinct cortical pathways for music and speech revealed by hypothesis-free voxel decomposition. Neuron 88:1281–1296. https://doi.org/10.1016/j.neuron.2015.11.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel AD (2008) Music, language, and the brain, First edn. Oxford University Press, Oxford

    Google Scholar 

  • Patil K, Pressnitzer D, Shamma S, Elhilali M (2012) Music in our ears: the biological bases of musical timbre perception. PLoS Comput Biol 8:e1002759. https://doi.org/10.1371/journal.pcbi.1002759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters RW, Moore BC, Baer T (1998) Speech reception thresholds in noise with and without spectral and temporal dips for hearing-impaired and normally hearing people. J Acoust Soc Am 103:577–587

    Article  CAS  PubMed  Google Scholar 

  • Pickett JM (1999) The acoustics of speech communication: fundamentals, speech perception theory, and technology. Allyn & Bacon, Boston

    Google Scholar 

  • Poeppel D, Idsardi WJ, van Wassenhove V (2008) Speech perception at the interface of neurobiology and linguistics. PhilosTransR Socl B BiolSci 363:1071–1086

    Google Scholar 

  • Qin MK, Oxenham AJ (2003) Effects of simulated cochlear-implant processing on speech reception in fluctuating maskers. J Acoust Soc Am 114:446–454

    Article  PubMed  Google Scholar 

  • Rabiner L, Schafer R (2010) Theory and applications of digital speech processing, First edn. Pearson, Upper Saddle River

    Google Scholar 

  • Rosen S (1992) Temporal information in speech: acoustic, auditory and linguistic aspects. Philos Trans R Soc B-Biological Sci 336:367–373

    Article  CAS  Google Scholar 

  • Sadagopan S, Wang X (2009) Nonlinear spectrotemporal interactions underlying selectivity for complex sounds in auditory cortex. J Neurosci 29:11192–11202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadie S (ed) (2001) The new grove dictionary of music and musicians, Second edn. Macmillan, London

    Google Scholar 

  • Santoro R, Moerel M, De Martino F, Goebel R, Ugurbil K, Yacoub E, Formisano E (2014) Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex. PLoS Comput Biol 10(1). https://doi.org/10.1371/journal.pcbi.1003412

    Article  PubMed  PubMed Central  Google Scholar 

  • Schädler MR, Kollmeier B (2015) Separable spectro-temporal Gabor filter bank features: reducing the complexity of robust features for automatic speech recognition. J Acoust Soc Am 137:2047–2059. https://doi.org/10.1121/1.4916618

    Article  PubMed  Google Scholar 

  • Schreiner C, Calhoun B (1995) Spectral envelope coding in cat primary auditory cortex: properties of ripple transfer functions. J Audit Neurosci 1:39–61

    Google Scholar 

  • Schreiner CE, Sutter ML (1992) Topography of excitatory bandwidth in cat primary auditory cortex: single-neuron versus multiple-neuron recordings. J Neurophysiol 68:1487–1502

    Article  CAS  PubMed  Google Scholar 

  • Schroeder M, Atal B (1985) Code-excited linear prediction(CELP): high-quality speech at very low bit rates. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing (ICASSP), p 937–940. doi: https://doi.org/10.1109/ICASSP.1985.1168147

  • Schuller B (2013) Applications in intelligent music analysis. Springer, Berlin/ Heidelberg

    Book  Google Scholar 

  • Shamma S, Fritz J (2014) Adaptive auditory computations. Curr Opin Neurobiol 25:164–168. https://doi.org/10.1016/j.conb.2014.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamma S, Lorenzi C (2013) On the balance of envelope and temporal fine structure in the encoding of speech in the early auditory system. J Acoust Soc Am 133:2818–2833. https://doi.org/10.1121/1.4795783

    Article  PubMed  PubMed Central  Google Scholar 

  • Shannon RV (2005) Speech and music have different requirements for spectral resolution. Int Rev Neurobiol 70:121–134

    Article  PubMed  Google Scholar 

  • Shannon R, Zeng F, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270:303–304

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Theunissen F (2003) Modulation spectra of natural sounds and ethological theories of auditory processing. J Acoust Soc Am 106:3394–3411

    Article  Google Scholar 

  • Smith ZM, Delgutte B, Oxenham AJ (2002) Chimaeric sounds reveal dichotomies in auditory perception. Nature 416:87–90. https://doi.org/10.1038/416087a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steeneken HJ, Houtgast T (1979) A physical method for measuring speech-transmission quality. J Acoust Soc Am 67:318–326

    Article  Google Scholar 

  • Thoret E, Depalle P, McAdams S (2016) Perceptually salient spectrotemporal modulations for recognition of sustained musical instruments. J Acoust Soc Am 140(6). https://doi.org/10.1121/1.4971204

    Article  PubMed  Google Scholar 

  • Turner RE, Sahani M (2011) Demodulation as probabilistic inference. IEEE Trans Audio Speech Lang Process 19(8):2398–2411

    Article  Google Scholar 

  • Van Der Wel RPRD, Sternad D, Rosenbaum DA (2009) Moving the arm at different rates: slow movements are avoided. J Mot Behav 42:29–36. https://doi.org/10.1080/00222890903267116

    Article  Google Scholar 

  • van Noorden L, Moelants D (1999) Resonance in the perception of musical pulse. J New Music Res 28:43–66. https://doi.org/10.1076/jnmr.28.1.43.3122

    Article  Google Scholar 

  • Venezia JH, Hickok G, Richards VM (2016) Auditory “bubbles”: efficient classification of the spectrotemporal modulations essential for speech intelligibility. J Acoust Soc Am 140(2):1072–1088. https://doi.org/10.1121/1.4960544

    Article  PubMed  PubMed Central  Google Scholar 

  • Versnel H, Kowalski N, Shamma SA (1995) Ripple analysis in ferret primary auditory cortex. III. Topographic distribution of ripple response parameters. J Audit Neurosci 1:271–286

    Google Scholar 

  • Wang TT, Quatieri TF (2012) Two-dimensional speech-signal modeling. IEEE Trans Audio Speech Lang Process 20:1843–1856. https://doi.org/10.1109/TASL.2012.2188795

    Article  Google Scholar 

  • Wilson BS (2004) Engineering design of cochlear implants. 20:14–52

    Chapter  Google Scholar 

  • Xu L, Pfingst BE (2003) Relative importance of temporal envelope and fine structure in lexical-tone perception. J Acoust Soc Am 114:3024–3027

    Article  PubMed  Google Scholar 

  • Yang X, Wang K, Shamma SA (1992) Auditory representations of acoustic signals. IEEE Trans Inf Theory 38:824–839

    Article  Google Scholar 

  • Zatorre RJ, Belin P, Penhune VB (2002) Structure and function of auditory cortex: music and speech. Trends Cogn Sci 6:37–46

    Article  PubMed  Google Scholar 

  • Zeng F-G, Nie K, Stickney GS, Kong Y-Y, Vongphoe M, Bhargave A, Wei C, Cao K (2005) Speech recognition with amplitude and frequency modulations. Proc Natl Acad Sci 102:2293–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Heinz MG, Bruce IC, Carney LH (2001) A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. J Acoust Soc Am 109:648–670

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Elhilali’s work is supported by grants from the National Science Foundation (NSF), the National Institutes of Health (NIH), and the Office of Naval Research (ONR).

Compliance with Ethics Requirements 

Mounya Elhilali declares she has no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounya Elhilali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elhilali, M. (2019). Modulation Representations for Speech and Music. In: Siedenburg, K., Saitis, C., McAdams, S., Popper, A., Fay, R. (eds) Timbre: Acoustics, Perception, and Cognition. Springer Handbook of Auditory Research, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-030-14832-4_12

Download citation

Publish with us

Policies and ethics