Skip to main content

Probability-Based Approach Explains (and Even Improves) Heuristic Formulas of Defuzzification

  • Conference paper
  • First Online:
Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM 2019)

Abstract

Fuzzy techniques have been successfully used in many applications. However, often, formulas for processing fuzzy information are heuristic: they lack a convincing justification, and thus, users are sometimes reluctant to use them. In this paper, we show that we can justify (and sometimes even improve) these methods if we use a probability-based approach.

This work was supported in part by the US National Science Foundation grant HRD-1242122 (Cyber-ShARE Center of Excellence).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belohlavek, R., Dauben, J.W., Klir, G.J.: Fuzzy Logic and Mathematics: A Historical Perspective. Oxford University Press, New York (2017)

    MATH  Google Scholar 

  2. Bellman, R.E., Zadeh, L.A.: Decision making in a fuzzy environment. Manage. Sci. 17(4), B141–B164 (1970)

    Article  MathSciNet  Google Scholar 

  3. Coletti, G., Scozzafava, R.: Conditional probability and fuzzy information. Comput. Stat. Data Anal. 51(1), 115–132 (2006)

    Article  MathSciNet  Google Scholar 

  4. Coletti, G., Scozzafava, R., Vantaggi, B.: Possibility measures in probabilistic inference. In: Dubois, D., Lubiano, M.A., Prade, H., Gil, M.Á., Grzegorzewski, P., Hryniewicz, O. (eds.) Soft Methods for Handling Variability and Imprecision. Advances in Soft Computing, vol. 48, pp. 51–58. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85027-4_7

    Chapter  Google Scholar 

  5. Coletti, G., Scozzafava, R., Vantaggi, B.: A bridge between probability and possibility in a comparative framework. In: Liu, W. (ed.) ECSQARU 2011. LNCS (LNAI), vol. 6717, pp. 557–568. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22152-1_47

    Chapter  MATH  Google Scholar 

  6. Feynman, R., Leighton, R., Sands, M.: The Feynman Lectures on Physics. Addison Wesley, Boston (2005)

    MATH  Google Scholar 

  7. Huynh, V.-N., Nakamori, Y., Lawry, J.: A probability-based approach to comparison of fuzzy numbers and applications to target-oriented decision making. IEEE Trans. Fuzzy Syst. 16(2), 371–387 (2008)

    Article  Google Scholar 

  8. Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Prentice Hall, Upper Saddle River (1995)

    MATH  Google Scholar 

  9. Kosheleva, O., Kreinovich, V.: Why Bellman-Zadeh approach to fuzzy optimization. Appl. Math. Sci. 12(11), 517–522 (2018)

    Google Scholar 

  10. Lawry, J.: A voting mechanism for fuzzy logic. Int. J. Approximate Reasoning 19(3–4), 315–333 (1998)

    Article  MathSciNet  Google Scholar 

  11. Lawry, J.: Borderlines and probabilities of borderlines: on the interconnection between vagueness and uncertainty. J. Appl. Logic 14, 113–138 (2016)

    Article  MathSciNet  Google Scholar 

  12. Luce, R.D., Raiffa, H.: Games and Decisions: Introduction and Critical Survey. Dover, New York (1989)

    MATH  Google Scholar 

  13. Mendel, J.M.: Uncertain Rule-Based Fuzzy Systems: Introduction and New Directions. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51370-6

    Book  MATH  Google Scholar 

  14. Myerson, R.B.: Game Theory: Analysis of Conflict. Harvard University Press, Harvard (1997)

    MATH  Google Scholar 

  15. Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic. Chapman and Hall/CRC, Boca Raton (2006)

    Google Scholar 

  16. Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer, Boston (1999)

    Book  Google Scholar 

  17. Thorne, K.S., Blandford, R.D.: Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics. Princeton University Press, Princeton (2017)

    MATH  Google Scholar 

  18. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  19. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are greatly thankful to the anonymous referees for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladik Kreinovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Servin, C., Kosheleva, O., Kreinovich, V. (2019). Probability-Based Approach Explains (and Even Improves) Heuristic Formulas of Defuzzification. In: Seki, H., Nguyen, C., Huynh, VN., Inuiguchi, M. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2019. Lecture Notes in Computer Science(), vol 11471. Springer, Cham. https://doi.org/10.1007/978-3-030-14815-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14815-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14814-0

  • Online ISBN: 978-3-030-14815-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics