Skip to main content

Approximation Algorithms for Graph Burning

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11436))

Abstract

Numerous approaches study the vulnerability of networks against social contagion. Graph burning studies how fast a contagion, modeled as a set of fires, spreads in a graph. The burning process takes place in synchronous, discrete rounds. In each round, a fire breaks out at a vertex, and the fire spreads to all vertices that are adjacent to a burning vertex. The selection of vertices where fires start defines a schedule that indicates the number of rounds required to burn all vertices. Given a graph, the objective of an algorithm is to find a schedule that minimizes the number of rounds to burn graph. Finding the optimal schedule is known to be NP-hard, and the problem remains NP-hard when the graph is a tree or a set of disjoint paths. The only known algorithm is an approximation algorithm for disjoint paths, which has an approximation ratio of 1.5.

We present approximation algorithms for graph burning. For general graphs, we introduce an algorithm with an approximation ratio of 3. When the graph is a tree, we present another algorithm with approximation ratio 2. Moreover, we consider a setting where the graph is a forest of disjoint paths. In this setting, when the number of paths is constant, we provide an optimal algorithm which runs in polynomial time. When the number of paths is more than a constant, we provide two approximation schemes: first, under a regularity condition where paths have asymptotically equal lengths, we show the problem admits an approximation scheme which is fully polynomial. Second, for a general setting where the regularity condition does not necessarily hold, we provide another approximation scheme which runs in time polynomial in the size of the graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anshelevich, E., Chakrabarty, D., Hate, A., Swamy, C.: Approximability of the firefighter problem - computing cuts over time. Algorithmica 62(1–2), 520–536 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Bessy, S., Bonato, A., Janssen, J.C.M., Rautenbach, D., Roshanbin, E.: Burning a graph is hard. Discret. Appl. Math. 232, 73–87 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Bessy, S., Bonato, A., Janssen, J.C.M., Rautenbach, D., Roshanbin, E.: Bounds on the burning number. Discret. Appl. Math. 235, 16–22 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Bonato, A., Gunderson, K., Shaw, A.: Burning the plane: densities of the infinite cartesian grid. Preprint (2019)

    Google Scholar 

  5. Bonato, A., Janssen, J., Roshanbin, E.: Burning a graph as a model of social contagion. In: Bonato, A., Graham, F.C., Prałat, P. (eds.) WAW 2014. LNCS, vol. 8882, pp. 13–22. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13123-8_2

    MATH  Google Scholar 

  6. Bonato, A., Janssen, J., Roshanbin, E.: How to burn a graph. Internet Math. 12(1–2), 85–100 (2016)

    MathSciNet  Google Scholar 

  7. Bonato, A., Lidbetter, T.: Bounds on the burning numbers of spiders and path-forests. ArXiv e-prints, July 2017

    Google Scholar 

  8. Bond, R.M., et al.: A 61-million-person experiment in social influence and political mobilization. Nature 489(7415), 295–298 (2012)

    Google Scholar 

  9. Cai, L., Verbin, E., Yang, L.: Firefighting on trees: (1\(-1\)/e)-approximation, fixed parameter tractability and a subexponential algorithm. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 258–269. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92182-0_25

    Google Scholar 

  10. Chen, N., Gravin, N., Lu, P.: On the approximability of budget feasible mechanisms. In: Proceedings of Annual ACM-SIAM Symposium on Discrete Algorithms SODA, pp. 685–699 (2011)

    Google Scholar 

  11. Chen, W., et al.: Influence maximization in social networks when negative opinions may emerge and propagate. In: Proceedings of SIAM International Conference on Data Mining, SDM, pp. 379–390 (2011)

    Google Scholar 

  12. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 199–208 (2009)

    Google Scholar 

  13. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. J. Algorithms 60(2), 115–143 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Domingos, P.M., Richardson, M.: Mining the network value of customers. In: Proceedings of ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 57–66 (2001)

    Google Scholar 

  15. Elkin, M., Kortsarz, G.: Sublogarithmic approximation for telephone multicast. J. Comput. Syst. Sci. 72(4), 648–659 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Fajardo, D., Gardner, L.M.: Inferring contagion patterns in social contact networks with limited infection data. Netw. Spat. Econ. 13(4), 399–426 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Assmann, S.F.: Problems in discrete applied mathematics. Ph.D. thesis, MIT (1983)

    Google Scholar 

  18. Finbow, S., King, A.D., MacGillivray, G., Rizzi, R.: The firefighter problem for graphs of maximum degree three. Discret. Math. 307(16), 2094–2105 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Fitzpatrick, S.L., Li, Q.: Firefighting on trees: how bad is the greedy algorithm? Congr. Numer. 145, 187–192 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, Stuttgart (1979)

    MATH  Google Scholar 

  21. Ghaffari, M., Haeupler, B., Khabbazian, M.: Randomized broadcast in radio networks with collision detection. Distrib. Comput. 28(6), 407–422 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and broadcasting in communication networks. Networks 18(4), 319–349 (1988)

    MathSciNet  MATH  Google Scholar 

  23. Jansen, K., Solis-Oba, R.: An asymptotic fully polynomial time approximation scheme for bin covering. Theor. Comput. Sci. 306(1–3), 543–551 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Kempe, D., Kleinberg, J.M., Tardos, É: Maximizing the spread of influence through a social network. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 137–146 (2003)

    Google Scholar 

  25. Kempe, D., Kleinberg, J., Tardos, É.: Influential nodes in a diffusion model for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468_91

    Google Scholar 

  26. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. Theory Comput. 11, 105–147 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Kleinberg, J.M.: Cascading behavior in social and economic networks. In: Proceedings of ACM Conference on Electronic Commerce (EC), pp. 1–4 (2013)

    Google Scholar 

  28. Kowalski, D.R., Pelc, A.: Optimal deterministic broadcasting in known topology radio networks. Distrib. Comput. 19(3), 185–195 (2007)

    MATH  Google Scholar 

  29. Kramer, A.D.I.: The spread of emotion via Facebook. In: CHI Conference on Human Factors in Computing Systems, (CHI), pp. 767–770 (2012)

    Google Scholar 

  30. Kramer, A.D.I., Guillory, J.E., Hancock, J.T.: Experimental evidence of massive-scale emotional contagion through social networks. In: Proceedings of the National Academy of Sciences, pp. 8788–8790 (2014)

    Google Scholar 

  31. Land, M.R., Lu, L.: An upper bound on the burning number of graphs. In: Bonato, A., Graham, F.C., Prałat, P. (eds.) WAW 2016. LNCS, vol. 10088, pp. 1–8. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49787-7_1

    Google Scholar 

  32. Mitsche, D., Pralat, P., Roshanbin, E.: Burning graphs: a probabilistic perspective. Graphs Comb. 33(2), 449–471 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Mitsche, D., Pralat, P., Roshanbin, E.: Burning number of graph products. Theor. Comput. Sci. 746, 124–135 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Nikzad, A., Ravi, R.: Sending secrets swiftly: approximation algorithms for generalized multicast problems. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 568–607. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7_48

    Google Scholar 

  35. Peleg, D.: Time-efficient broadcasting in radio networks: a review. In: Janowski, T., Mohanty, H. (eds.) ICDCIT 2007. LNCS, vol. 4882, pp. 1–18. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77115-9_1

    Google Scholar 

  36. Ravi, R.: Rapid rumor ramification: approximating the minimum broadcast time (extended abstract). In: Proceedings of Symposium on Foundations of Computer Science (FOCS), pp. 202–213 (1994)

    Google Scholar 

  37. Richardson, M., Domingos, P.M.: Mining knowledge-sharing sites for viral marketing. In: Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 61–70 (2002)

    Google Scholar 

  38. Schindelhauer, C.: On the inapproximability of broadcasting time. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 226–237. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44436-X_23

    Google Scholar 

  39. Sim, K.A., Tan, T.S., Wong, K.B.: On the burning number of generalized petersen graphs. Bull. Malays. Math. Sci. Soc. 6, 1–14 (2017)

    Google Scholar 

  40. Slater, P.J., Cockayne, E.J., Hedetniemi, S.T.: Information dissemination in trees. SIAM J. Comput. 10(4), 692–701 (1981)

    MathSciNet  MATH  Google Scholar 

  41. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-662-04565-7

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Bonato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonato, A., Kamali, S. (2019). Approximation Algorithms for Graph Burning. In: Gopal, T., Watada, J. (eds) Theory and Applications of Models of Computation. TAMC 2019. Lecture Notes in Computer Science(), vol 11436. Springer, Cham. https://doi.org/10.1007/978-3-030-14812-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14812-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14811-9

  • Online ISBN: 978-3-030-14812-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics