Skip to main content

DNA Methylation: Biological Implications and Modulation of Its Aberrant Dysregulation

  • Chapter
  • First Online:
The DNA, RNA, and Histone Methylomes

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

The alteration of the DNA methylation pattern is often related to the onset of diseases based on epigenetic dysregulation, primarily cancer. In this scenery the development of DNA methyltransferase inhibitors is one of the most attractive challenges for anticancer therapy. The present chapter proposes a comprehensive classification of the DNA methyltransferase inhibitors known in literature, on the basis of their natural or synthetic nature and their mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams A, Leong C, Denny WA et al (2005) Structures of two minor-groove-binding quinolinium quaternary salts complexed with d(CGCGAATTCGCG)2 at 1.6 and 1.8 Å resolution. Acta Crystallogr Sect D Biol Crystallogr 61:1348–1353

    Article  CAS  Google Scholar 

  • Aguilera OC, Depreux P, Halby L et al (2017) DNA methylation targeting: the DNMT/HMT crosstalk challenge. Biomolecules 7:1–21

    Google Scholar 

  • Ahuja N, Easwaran H, Baylin SB (2014) Harnessing the potential of epigenetic therapy to target solid tumors. J Clin Invest 124:56–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahuja N, Sharma AR, Baylin SB (2016) Epigenetic therapeutics: a new weapon in the war against cancer. Annu Rev Med 67:73–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aldawsari FS, Aguayo-ortiz R, Kapilashrami K et al (2016) Resveratrol-salicylate derivatives as selective DNMT3 inhibitors and anticancer agents. J Enzyme Inhib Med Chem 31:695–703

    CAS  PubMed  Google Scholar 

  • Alleman WG, Tabios RL, Chandramouli GVR et al (2004) The in vitro and in vivo effects of re-expressing methylated von Hippel-Lindau tumor suppressor gene in clear cell renal carcinoma with 5-Aza-2-deoxycytidine. Clin Cancer Res 10:7011–7021

    Article  CAS  PubMed  Google Scholar 

  • Amato RJ (2007) Inhibition of DNA methylation by antisense oligonucleotide MG98 as cancer therapy. Clin Genitourin Cancer 5:422–426

    Article  CAS  PubMed  Google Scholar 

  • Amato RJ, Stephenson J, Hotte S et al (2012) MG98, a second-generation DNMT1 inhibitor, in the treatment of advanced. Renal Cell Carcinoma 2:415–421

    Google Scholar 

  • Asgatay S, Champion C, Marloie G et al (2014) Synthesis and evaluation of analogues of N-Phthaloyl-L-tryptophan RG108 as inhibitors of DNA methyltransferase 1. J Med Chem 57:421–434

    Article  CAS  PubMed  Google Scholar 

  • Auclair G, Weber M (2012) Mechanisms of DNA methylation and demethylation in mammals. Biochimie 94:2202–2211

    Article  CAS  PubMed  Google Scholar 

  • Azad N, Zahnow CA, Rudin CM et al (2013) The future of epigenetic therapy in solid tumours-lessons from the past. Nat Rev Clin Oncol 10:256–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballestar E, Li T (2017) New insights into the epigenetics of inflammatory rheumatic diseases. Nat Rev Rheumatol 10:593–605

    Article  CAS  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF et al (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–124

    Article  CAS  PubMed  Google Scholar 

  • Baubec T, Colombo DF, Wirbelauer C et al (2015) Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520:243–247

    Article  CAS  PubMed  Google Scholar 

  • Baud MGJ, Leiser T, Haus P et al (2012) Defining the mechanism of action and enzymatic selectivity of psammaplin A against its epigenetic targets. J Med Chem 55:1731–1750

    Article  CAS  PubMed  Google Scholar 

  • Berger SL, Kouzarides T, Shiekhattar R et al (2009) An operational definition of epigenetics. Genes Dev 23:781–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergman AM, Kuiper CM, Noordhuis P et al (2004) Antiproliferative activity and mechanism of action of fatty acid derivatives of gemcitabine in leukemia and solid tumor cell lines and in human xenografts. Nucleosides Nucleotides Nucleic Acids 23:1329–1333

    Article  CAS  PubMed  Google Scholar 

  • Borgel J, Guibert S, Li Y et al (2010) Targets and dynamics of promoter DNA methylation during early mouse development. Nat Genet 42:1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Bouchut A, Rotili D, Pierrot C et al (2019) Identification of novel quinazoline derivatives as potent antiplasmodial agents. Eur J Med Chem 161:277–291

    Article  CAS  PubMed  Google Scholar 

  • Breistøl K, Balzarini J, Sandvold ML et al (1999) Antitumor activity of P-4055 (elaidic acid-cytarabine) compared to cytarabine in metastatic and s.c. human tumor xenograft models. Cancer Res 59:2944–2949

    PubMed  Google Scholar 

  • Bressler J, Shimmin LC, Boerwinkle E et al (2011) Global DNA methylation and risk of subclinical atherosclerosis in young adults: the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study. Atherosclerosis 219:958–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brueckner B, Boy RG, Siedlecki P et al (2005) Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 14:6305–6311

    Article  Google Scholar 

  • Brueckner B, Kuck D, Lyko F (2007) DNA methyltransferase inhibitors for cancer therapy. Cancer J 13:17–22

    Article  CAS  PubMed  Google Scholar 

  • Brueckner B, Rius M, Markelova MR et al (2010) Delivery of 5-azacytidine to human cancer cells by elaidic acid esterification increases therapeutic drug efficacy. Mol Cancer Ther 9:1256–1264

    Article  CAS  PubMed  Google Scholar 

  • Cameron EE, Bachman KE, Myöhänen S et al (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21:103–107

    Article  CAS  PubMed  Google Scholar 

  • Candelaria M, Herrera A, Labardini J et al (2011) Hydralazine and magnesium valproate as epigenetic treatment for myelodysplastic syndrome. Preliminary results of a phase-II trial. Ann Hematol 90:379–387

    Article  CAS  PubMed  Google Scholar 

  • Castellano S, Kuck D, Sala M et al (2008) Constrained analogues of procaine as novel small molecule inhibitors of DNA methyltransferase-1. J Med Chem 51:2321–2325

    Article  CAS  PubMed  Google Scholar 

  • Castellano S, Kuck D, Viviano M et al (2011) Synthesis and biochemical evaluation of Δ 2 -Isoxazoline derivatives as DNA methyltransferase 1 inhibitors. J Med Chem 54:7663–7677

    Article  CAS  PubMed  Google Scholar 

  • Ceccaldi A, Rajavelu A, Champion C et al (2011) C5-DNA methyltransferase inhibitors: from screening to effects on zebrafish embryo development. Chembiochem 12:1337–1345

    Article  CAS  PubMed  Google Scholar 

  • Ceccaldi A, Rajavelu A, Ragozin S et al (2013) Identification of novel inhibitors of DNA methylation by screening of a chemical library. ACS Chem Biol 8:543–548

    Article  CAS  PubMed  Google Scholar 

  • Challen GA, Sun D, Jeong M et al (2012) Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 44:23–31

    Article  CAS  Google Scholar 

  • Champion C, Guianvarc’h D, Sénamaud-Beaufort C et al (2010) Mechanistic insights on the inhibition of C5 DNA methyltransferases by zebularine. PLoS One 5(8):e12388. https://doi.org/10.1371/journal.pone.0012388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Hevi S, Gay F et al (2007) Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nat Genet 39:391–396

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Wang Y, Zhou W et al (2014) Identifying novel selective non-nucleoside DNA methyltransferase 1 inhibitors through docking-based virtual screening. J Med Chem 57(21):9028–9041

    Article  CAS  PubMed  Google Scholar 

  • Chik F, Szyf M (2011) Effects of specific DNMT gene depletion on cancer cell transformation and breast cancer cell invasion; toward selective DNMT inhibitors. Carcinogenesis 32:224–232

    Article  CAS  PubMed  Google Scholar 

  • Christman JK (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21:5483–5495

    Article  CAS  PubMed  Google Scholar 

  • Chuang JC (2005) Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2′-deoxycytidine. Mol Cancer Ther 4:1515–1520

    Article  CAS  PubMed  Google Scholar 

  • Chuang JC, Warner SL, Vollmer D et al (2010) S110, a 5-aza-2′-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol Cancer Ther 9:1443–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clozel T, Yang SN, Elstrom RL et al (2013) Mechanism-based epigenetic chemosensitization therapy of diffuse large B-cell lymphoma. Cancer Discov 3:1002–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta J, Ghoshal K, Denny WA et al (2009) A new class of quinoline-based DNA hypomethylating agents reactivates tumor suppressor genes by blocking DNA methyltransferase 1 activity and inducing its degradation. Cancer Res 69:4277–4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng C, Lu Q, Zhang Z et al (2003) Hydralazine may induce autoimmunity by inhibiting extracellular signal - regulated kinase pathway signaling. Arthritis Rheum 48:746–756

    Article  CAS  PubMed  Google Scholar 

  • Derissen EJB, Beijnen JH, Schellens JHM (2013) Concise drug review: azacitidine and decitabine. Oncologist 18:619–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhe-paganon S, Syeda F, Park L (2011) Review article: DNA methyl transferase 1: regulatory mechanisms and im-plications in health and disease. Int J Biochem Mol Biol 2:58–66

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding L, Qiu L, Zhang J et al (2009) Camptothecin-induced cell proliferation inhibition and apoptosis enhanced by DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine. Biol Pharm Bull 32:1105–1108

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413

    Article  CAS  PubMed  Google Scholar 

  • Erdmann A, Halby L, Fahy J et al (2015a) Targeting DNA methylation with small molecules: what’s next? J Med Chem 58:2569–2583

    Article  CAS  PubMed  Google Scholar 

  • Erdmann A, Menon Y, Gros C et al (2015b) Design and synthesis of new non nucleoside inhibitors of DNMT3A. Bioorg Med Chem 23:5946–5953

    Article  CAS  PubMed  Google Scholar 

  • Erdmann A, Menon Y, Gros C et al (2016) Identification and optimization of hydrazone-gallate derivatives as specific inhibitors of DNA methyltransferase 3A. Future Med Chem 8(4):373–380. https://doi.org/10.1016/B978-0-12-544952-6.50001-0

    Article  CAS  PubMed  Google Scholar 

  • Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298

    Article  CAS  PubMed  Google Scholar 

  • Estéve P-O, Chin HG, Smallwood A et al (2006) Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev 20:3089–3103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fagan RL, Cryderman DE, Kopelovich L et al (2013) Laccaic acid A is a direct, DNA-competitive inhibitor of DNA. J Biol Chem 288:23858–23867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahy J, Jeltsch A, Arimondo PB (2012) DNA methyltransferase inhibitors in cancer: a chemical and therapeutic patent overview and selected clinical studies. Expert Opin Ther Pat 22(12):1427–1442

    Article  CAS  PubMed  Google Scholar 

  • Fandy TE, Herman JG, Kerns P et al (2009) Early epigenetic changes and DNA damage do not predict clinical response in an overlapping schedule of 5-azacytidine and entinostat in patients with myeloid malignancies. Blood 114:2764–2773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang X, Robinson J, Wang-hu J et al (2015) cAMP induces hypertrophy and alters DNA methylation in HL-1 cardiomyocytes. Am J Physiol Cell Physiol 6:425–436

    Article  CAS  Google Scholar 

  • Ferraris D, Duvall B, Delahanty G et al (2014) Design, synthesis, and pharmacological evaluation of fluorinated tetrahydrouridine derivatives as inhibitors of cytidine deaminase. J Med Chem 57:2582–2588

    Article  CAS  PubMed  Google Scholar 

  • Festuccia C, Gravina GL, Alessandro AMD et al (2009) Azacitidine improves antitumor effects of docetaxel and cisplatin in aggressive prostate cancer models. Endocr Relat Cancer 16(2):401–413

    Article  CAS  PubMed  Google Scholar 

  • Flotho C, Claus R, Batz C et al (2009) The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia 23:1019–1028

    Article  CAS  PubMed  Google Scholar 

  • Fuso A, Nicolia V, Cavallaro RA et al (2011) DNA methylase and demethylase activities are modulated by one-carbon metabolism in Alzheimer’s disease models. J Nutr Biochem 22:242–251

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Manero G, Gore SD, Cogle C et al (2011) Phase I study of oral azacitidine in myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myeloid leukemia. J Clin Oncol 29:2521–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garzon R, Heaphy CEA, Havelange V et al (2009) MicroRNA 29b functions in acute myeloid leukemia. Blood 114:5331–5342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaudet F (2003) Induction of tumors in mice by genomic hypomethylation. Science 300:489–492

    Article  CAS  PubMed  Google Scholar 

  • Gausachs M, Mur P, Corral J et al (2012) MLH1 promoter hypermethylation in the analytical algorithm of Lynch syndrome: a cost-effectiveness study. Eur J Hum Genet 20(7):762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghoshal K, Datta J, Majumder S et al (2005) 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol 25:4727–4741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraldo AM, Decourcy K, Ball SF et al (2013) Gene expression of Dnmt1 isoforms. Cell Reprogram 15:309–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godert AM, Angelino N, Woloszynska-Read A et al (2006) An improved synthesis of psammaplin A. Bioorganic Med Chem Lett 16:3330–3333

    Article  CAS  Google Scholar 

  • Gordian E, Ramachandran K, Singal R (2009) Methylation mediated silencing of TMS1 in breast cancer and its potential contribution to docetaxel cytotoxicity. Anticancer Res 29:3207–3210

    CAS  PubMed  Google Scholar 

  • Goyal R, Reinhardt R, Jeltsch A (2006) Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase. Nucleic Acids Res 34:1182–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gravina GL, Festuccia C, Popov VM et al (2010) Biological rationale for the use of DNA methyltransferase inhibitors as new strategy for modulation of tumor response to chemotherapy and radiation. Mol Cancer 9:305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grégoire R, Fleury L, Céline F et al (2017) Inhibition studies of DNA methyltransferases by maleimide derivatives of RG108 as non-nucleoside inhibitors. Future Med Chem 9:533–536

    Article  CAS  Google Scholar 

  • Griffiths EA, Gore SD (2008) DNA methyltransferase and histone deacetylase inhibitors in the treatment of myelodysplastic syndromes. Semin Hematol 45:23–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gros C, Fahy J, Halby L et al (2012) DNA methylation inhibitors in cancer: recent and future approaches. Biochimie 94:2280–2296

    Article  CAS  PubMed  Google Scholar 

  • Gros C, Fleury L, Nahoum V et al (2015) New insights on the mechanism of quinoline-based DNA methyltransferase inhibitors. J Biol Chem 290:6293–6302

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Wang L, Li J et al (2014) Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature 517:640–644

    Article  PubMed  CAS  Google Scholar 

  • Halby L, Arimondo PB (2015) Quinazoline derivatives and their use as DNA methyltransferase inhibitors. WO2015040169A1

    Google Scholar 

  • Halby L, Champion C, Sénamaud-Beaufort C et al (2012) Rapid synthesis of new DNMT inhibitors derivatives of procainamide. Chembiochem 13:157–165

    Article  CAS  PubMed  Google Scholar 

  • Halby L, Menon Y, Rilova E et al (2017) Rational design of bisubstrate-type analogues as inhibitors of DNA methyltransferases in cancer cells. J Med Chem 60:4665–4679

    Article  CAS  PubMed  Google Scholar 

  • Hatada I (2010) The epigenomics of cancer. In: Cho WC (ed) An omics perspective on cancer research. Springer, Dordrecht

    Google Scholar 

  • Higuchi F, Uchida S, Yamagata H et al (2011) State-dependent changes in the expression of DNA methyltransferases in mood disorder patients. J Psychiatr Res 45:1295–1130

    Article  PubMed  Google Scholar 

  • Hon GC, Hawkins RD, Caballero OL et al (2012) Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res 22:246–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshino O, Murakata M, Yamada K (1992) Synthesis of a bromotyrosine derived C02H. Bioorg Med Chem Lett 2:1561–1562

    Article  CAS  Google Scholar 

  • Issa JPJ, Kantarjian HM (2009) Targeting DNA methylation. Clin Cancer Res 15:3938–3946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia D, Jurkowska RZ, Zhang X et al (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449:248–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PA, Liang G (2009) Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 10:805–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PA, Taylor SM (1980) Cellular differentiation, cytidine analogs and DNA methylation. Cell 20:85–93

    Article  CAS  PubMed  Google Scholar 

  • José-Enériz ES, Agirre X, Rabal O et al (2017) Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies. Nat Commun 8:15424. https://doi.org/10.1038/ncomms15424

    Article  CAS  Google Scholar 

  • Juergens RA, Wrangle J, Vendetti FP et al (2011) Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov 1:598–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurkowska RZ, Jurkowski TP, Jeltsch A (2011) Structure and function of mammalian DNA methyltransferases. Chembiochem 12:206–222

    Article  CAS  PubMed  Google Scholar 

  • Kabro A, Lachance H, Marcoux-Archambault I et al (2013) Preparation of phenylethylbenzamide derivatives as modulators of DNMT3 activity. Medchemcomm 4:1562–1570

    Article  CAS  Google Scholar 

  • Karahoca M, Momparler RL (2013) Pharmacokinetic and pharmacodynamic analysis of 5-aza-2′-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin Epigenetics 5:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karsli-Ceppioglu S (2016) Epigenetic mechanisms in psychiatric diseases and epigenetic therapy. Drug Dev Res 77(7):407–413

    Article  CAS  PubMed  Google Scholar 

  • Kilgore JA, Du X, Melito L et al (2013) Identification of DNMT1 selective antagonists using a novel scintillation proximity assay. J Biol Chem 288:19673–19684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JS, Han J, Shim YM et al (2005) Aberrant methylation of H-cadherin (CDH13) promoter is associated with tumor progression in primary nonsmall cell lung carcinoma. Cancer 104:1825–1833

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Kim JH, Chie EK et al (2012) DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity. Radiat Oncol 7:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim AY, Park YJ, Pan X et al (2015) Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat Commun 6:1–11

    Google Scholar 

  • Klimasauskas S, Kumar S, Roberts RJ et al (1994) Hhal methyltransferase flips its target base out of the DNA helix. Cell 76:357–369

    Article  CAS  PubMed  Google Scholar 

  • Klisovic RB, Stock W, Cataland S et al (2008) A phase I biological study of MG98, an oligodeoxynucleotide antisense to DNA methyltransferase 1, in patients with high-risk myelodysplasia and acute myeloid leukemia. Clin Cancer Res 14:2444–2449

    Article  CAS  PubMed  Google Scholar 

  • Kristensen LS, Nielsen HM, Hansen LL (2009) Epigenetics and cancer treatment. Eur J Pharmacol 625:131–142

    Article  PubMed  CAS  Google Scholar 

  • Kuck D, Caulfield T, Lyko F et al (2010a) Nanaomycin A selectively inhibits DNMT3B and reactivates silenced tumor suppressor genes in human cancer cells. Mol Cancer Ther 9:3015–3023

    Article  CAS  PubMed  Google Scholar 

  • Kuck D, Singh N, Lyko F et al (2010b) Novel and selective DNA methyltransferase inhibitors: docking-based virtual screening and experimental evaluation. Bioorg Med Chem 18:822–829

    Article  CAS  PubMed  Google Scholar 

  • Kundakovic M, Chen Y, Costa E, Grayson DR (2007) DNA methyltransferase inhibitors coordinately induce expression of the human reelin and glutamic acid decarboxylase 67 genes. Mol Pharmacol 71:644–653

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Shim J, Zhu B (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68:1018–1030

    Article  CAS  PubMed  Google Scholar 

  • Lemaire M, Momparler LF, Raynal NJM et al (2009) Inhibition of cytidine deaminase by zebularine enhances the antineoplastic action of 5-aza-2-deoxycytidine. Cancer Chemother Pharmacol 63:411–416

    Article  CAS  PubMed  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Ahuja N, Burger PC et al (1999) Methylation and silencing of the Thrombospondin-1 promoter in human cancer. Oncogene 18(21):3284–3289

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhao M, Yin H et al (2010) Overexpression of the growth arrest and DNA damage – induced 45 gene contributes to autoimmunity by promoting DNA demethylation in lupus T cells. Arthritis Rheum 62:1438–1447

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Geng PL, Jiang W et al (2014) Enhancement of radiosensitivity by 5-Aza-CdR through activation of G2/M checkpoint response and apoptosis in osteosarcoma cells. Tumor Biol 35:4831–4839

    Article  CAS  Google Scholar 

  • Lin J, Haffner MC, Zhang Y et al (2011) Disulfiram is a DNA demethylating agent and inhibits prostate cancer cell growth. Prostate 71:333–343

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Xie Z, Jones W et al (2009) Curcumin is a potent DNA hypomethylation agent. Bioorg Med Chem Lett 19:706–709

    Article  PubMed  CAS  Google Scholar 

  • Lopez M, Halby L, Arimondo PB (2016) DNA methyltransferase inhibitors: development and applications. In: Jeltsch A, Jurkowska RZ (eds) DNA methyltransferases - role and function. Springer, Cham

    Google Scholar 

  • López-Pedrera C, Pérez-Sánchez C, Ramos-Casals M et al (2012) Cardiovascular risk in systemic autoimmune diseases: epigenetic mechanisms of immune regulatory functions. Clin Dev Immunol 2012:974648. https://doi.org/10.1155/2012/974648

    Article  CAS  PubMed  Google Scholar 

  • Luczak MW, Jagodziński PP (2006) The role of DNA methylation in cancer development. Folia Histochem Cytobiol 44:143–154

    CAS  PubMed  Google Scholar 

  • Lujambio A, Portela A, Liz J et al (2010) CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene 29:6390–6401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mai A, Altucci L (2009) Epi-drugs to fight cancer: from chemistry to cancer treatment, the road ahead. Int J Biochem Cell Biol 41:199–213

    Article  CAS  PubMed  Google Scholar 

  • Marcucci G, Silverman L, Eller M et al (2005) Bioavailability of azacitidine subcutaneous versus intravenous in patients with the myelodysplastic syndromes. J Clin Pharmacol 45:597–602

    Article  CAS  PubMed  Google Scholar 

  • Medina-franco JL, Yee J (2013) Docking of a novel DNA methyltransferase inhibitor identified from high- throughput screening: insights to unveil inhibitors in chemical databases. Mol Divers 17(2):337–344

    Article  CAS  PubMed  Google Scholar 

  • Medina-Franco JL, Lopez-Vallejo F, Kuck D et al (2011) Natural products as DNA methyltransferase inhibitors: a computer-aided discovery approach. Mol Divers 15:293–304

    Article  CAS  PubMed  Google Scholar 

  • Michie AM, McCaig AM, Nakagawa R et al (2010) Death-associated protein kinase (DAPK) and signal transduction: regulation in cancer. FEBS J 277:74–80

    Article  CAS  PubMed  Google Scholar 

  • Miller G (2010) The seductive allure of behavioral epigenetics. Science 329:24–27

    Article  CAS  PubMed  Google Scholar 

  • Myrianthopoulos V, Cartron PF, Klimašauskas S et al (2016) Tandem virtual screening targeting the SRA domain of UHRF1 identifies a novel chemical tool modulating DNA methylation. Eur J Med Chem 114:390–396. https://doi.org/10.1016/j.ejmech.2016.02.043

    Article  CAS  PubMed  Google Scholar 

  • Nagaraju GP, Zhu S, Wen J et al (2013) Novel synthetic curcumin analogues EF31 and UBS109 are potent DNA hypomethylating agents in pancreatic cancer. Cancer Lett 341:195–203

    Article  CAS  PubMed  Google Scholar 

  • Pathania R, Ramachandran S, Mariappan G et al (2016) Combined inhibition of DNMT and HDAC blocks the tumorigenicity of cancer stem-like cells and attenuates mammary tumor growth. Cancer Res 76:3224–3235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pechalrieu D, Etievant C, Arimondo PB (2017) DNA methyltransferase inhibitors in cancer: from pharmacology to translational studies. Biochem Pharmacol 129:1–13

    Article  CAS  PubMed  Google Scholar 

  • Piña IC, Gautschi JT, Wang G-Y-S et al (2003) Psammaplins from the sponge Pseudoceratina purpurea: inhibition of both histone deacetylase and DNA methyltransferase. J Org Chem 68:3866–3873

    Article  PubMed  CAS  Google Scholar 

  • Pradhan S, Esteve P-O, Zhang G (2016) Dnmt inhibitors. Patent US20160272977A1

    Google Scholar 

  • Qin W, Zhang K, Clarke K et al (2014) Methylation and miRNA effects of resveratrol on mammary tumors vs. normal tissue. Nutr Cancer 66:270–277

    Article  CAS  PubMed  Google Scholar 

  • Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432

    Article  CAS  PubMed  Google Scholar 

  • Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610

    Article  CAS  PubMed  Google Scholar 

  • Robertson KD, Ait-Si-Ali S, Yokochi T et al (2000) DNMT1 forms a complex with RB, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 25:338–342

    Article  CAS  PubMed  Google Scholar 

  • Rondelet G, Wouters J (2017) Human DNA (cytosine-5)-methyltransferases: a functional and structural perspective for epigenetic cancer therapy. Biochimie 139:137–147

    Article  CAS  PubMed  Google Scholar 

  • Rotili D, Tarantino D, Marrocco B et al (2014) Properly substituted analogues of BIX-01294 lose inhibition of G9a histone methyltransferase and gain selective anti-DNA methyltransferase 3A activity. PLoS One 9:1–9

    Article  CAS  Google Scholar 

  • Rountree MR, Bachman KE, Baylin SB (2000) DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 25:269–277

    Article  CAS  PubMed  Google Scholar 

  • Ruthenburg AJ, Li H, Patel DJ, David Allis C (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8(12):983–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saavedra OM, Isakovic L, Llewellyn DB et al (2009) SAR around (l)-S-adenosyl-l-homocysteine, an inhibitor of human DNA methyltransferase (DNMT) enzymes. Bioorganic Med Chem Lett 19:2747–2751

    Article  CAS  Google Scholar 

  • Sacconi S, Camaño P, de Greef JC et al (2012) Patients with a phenotype consistent with facioscapulohumeral muscular dystrophy display genetic and epigenetic heterogeneity. J Med Genet 49:41–46

    Article  CAS  PubMed  Google Scholar 

  • Segura-Pacheco B, Trejo-Becerril C, Perez-Cardenas E et al (2003) Reactivation of tumor suppressor genes by the cardiovascular drugs hydralazine and procainamide and their potential use in cancer therapy. Clin Cancer Res 9:1596–1603

    CAS  PubMed  Google Scholar 

  • Shen L, Kantarjian H, Guo Y et al (2010) DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes. J Clin Oncol 28:605–613

    Article  CAS  PubMed  Google Scholar 

  • Siedlecki P, Garcia Boy R, Musch T et al (2005) Discovery of two novel, small-molecule inhibitors of DNA methylation. J Med Chem 49:678–683

    Article  CAS  Google Scholar 

  • Sledziewski A, Devos T, Kole R (2015) Oligonucleotide, inhibitors of DNA methyltransferase and their use in treating disease. Patent US20150167004A1

    Google Scholar 

  • Smallwood SA, Tomizawa SI, Krueger F et al (2011) Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet 43:811–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Rechkoblit O, Bestor TH et al (2010) Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science 331:1036–1040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stresemann C, Brueckner B, Musch T et al (2006) Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res 66:2794–2800

    Article  CAS  PubMed  Google Scholar 

  • Sulewska A, Niklińska W, Kozłowski M et al (2007) DNA methylation in states of cell physiology and pathology. Folia Histochem Cytobiol 45:149–158

    CAS  PubMed  Google Scholar 

  • Sun B, Hu L, Luo Z et al (2016) DNA methylation perspectives in the pathogenesis of autoimmune diseases. Clin Immunol 164:21–27

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Suzuki I, Leodolter A et al (2006) Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell 9:199–207

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Tanaka R, Hamada S et al (2010) Design, synthesis, inhibitory activity, and binding mode study of novel DNA methyltransferase 1 inhibitors. Bioorg Med Chem Lett 20:1124–1127

    Article  CAS  PubMed  Google Scholar 

  • Takashima S, Takehashi M, Lee J et al (2009) Abnormal DNA methyltransferase expression in mouse germline stem cells results in spermatogenic defects. Biol Reprod 81:155–164

    Article  CAS  PubMed  Google Scholar 

  • Tian F, Hu X-Z, Wu X et al (2009) Dynamic chromatin remodeling events in hippocampal neurons are associated with NMDA receptor-mediated activation of Bdnf gene promoter 1. J Neurochem 109(5):1375–1388

    Article  CAS  PubMed  Google Scholar 

  • Valente S, Liu Y, Schnekenburger M et al (2014) Selective non-nucleoside inhibitors of human DNA methyltransferases active in cancer including in cancer stem cells. J Med Chem 57:701–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Bemmel DM, Brank AS, Eritja R et al (2009) DNA (Cytosine-C5) methyltransferase inhibition by oligodeoxyribonucleotides containing 2-(1H)-pyrimidinone (zebularine aglycon) at the enzymatic target site. Biochem Pharmacol 78:633–641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veldic M, Caruncho HJ, Liu WS et al (2003) DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc Natl Acad Sci USA 1:348–353

    Google Scholar 

  • Villar-Garea A, Fraga MF, Espada J et al (2003) Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res 63:4984–4989

    CAS  PubMed  Google Scholar 

  • Walter ED (1941) Genistin (an isoflavone glucoside) and its aglucone, genistein, from soybeans. J Am Chem Soc 63:3273–3276

    Article  CAS  Google Scholar 

  • Wang L, Zhang Y, Li R et al (2013) 5-aza-2′-Deoxycytidine enhances the radiosensitivity of breast cancer cells. Cancer Biother Radiopharm 28:34–44

    Article  PubMed  CAS  Google Scholar 

  • Weber M, Hellmann I, Stadler MB et al (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39:457–466

    Article  CAS  PubMed  Google Scholar 

  • Wijermans PW, Ruter B, Baer MR et al (2008) Efficacy of decitabine in the treatment of patients with chronic myelomonocytic leukemia (CMML). Leuk Res 32:587–591

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Coskun V, Tao J et al (2010) Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329:444–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang L, Dong W, Wang R et al (2014) All-trans retinoic acid enhances the effect of 5-aza-2′-deoxycytidine on p16INK4a demethylation, and the two drugs synergistically activate retinoic acid receptor β gene expression in the human erythroleukemia K562 cell line. Oncol Lett 8:117–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Watts JA, Pope SD et al (2009) Transcriptional competence and the active marking of tissue-specific enhancers by defined transcription factors in embryonic and induced pluripotent stem cells. Genes Dev 23:2824–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Mao C, Ding Y et al (2010) Molecular and enzymatic profiles of mammalian DNA methyltransferases: structures and targets for drugs. Curr Med Chem 17:4052–4071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang AS, Estedo MR, Garcia-Manero G et al (2003) Comment on “Chromosomal instability and tumors promoted by DNA hypomethylation” and “Induction of tumors in mice by genomic hypomethylation”. Science 302:1153

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Hoshino K, Sanchez-Gonzalez B et al (2005) Antileukemia activity of the combination of 5-aza-2′-deoxycytidine with valproic acid. Leuk Res 29:739–748

    Article  CAS  PubMed  Google Scholar 

  • Yang CS, Fang M, Lambert JD et al (2008) Reversal of hypermethylation and reactivation of genes by dietary polyphenolic compounds. Nutr Rev 66:18–20

    Article  Google Scholar 

  • Yang CS, Wang X, Lu G et al (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9:429–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D, Torres CM, Bardhan K et al (2012) Decitabine and vorinostat cooperate to sensitize colon carcinoma cells to fas ligand-induced apoptosis in vitro and tumor suppression in vivo. J Immunol 188:4441–4449

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Stivers JT (2010) Fluorescence-based high-throughput assay for human DNA. Anal Biochem 401:168–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo CB, Jeong S, Egger G et al (2007) Delivery of 5-aza-2′-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res 67:6400–6408

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Sun Q, Li D et al (2017) Design, synthesis and anticancer potential of NSC-319745 hydroxamic acid derivatives as DNMT and HDAC inhibitors. Eur J Med Chem 134:281–292

    Article  CAS  PubMed  Google Scholar 

  • Zambrano P, Segura-Pacheco B, Perez-Cardenas E et al (2005) A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes. BMC Cancer 5:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao M, Tang J, Gao F et al (2010) Hypomethylation of IL10 and IL13 promoters in CD4 + T cells of patients with systemic lupus erythematosus. J Biomed Biotechnol 2010:1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonello Mai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lucidi, A., Tomaselli, D., Rotili, D., Mai, A. (2019). DNA Methylation: Biological Implications and Modulation of Its Aberrant Dysregulation. In: Jurga, S., Barciszewski, J. (eds) The DNA, RNA, and Histone Methylomes. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-14792-1_12

Download citation

Publish with us

Policies and ethics