Skip to main content

Construction and Validation of Protocol for Digital Measurement of Human Body

  • Conference paper
  • First Online:
Sport Science Research and Technology Support (icSPORTS 2016, icSPORTS 2017)

Abstract

Standardized measurement protocol for assessing anthropometric dimensions of human body is precisely predefined by International Biological Programme (IBP), [16]. Objective of this research was to produce, compare, validate and standardize protocol for digital measurement (DM-I) using Kinect sensor in order to economize future large scale research. Results in selected variables revealed that classically and digitally measured parameters, e.g. height, in average results do not differ significantly, while e.g. for lengths of the left forearm and the left lower leg do indicate lower values. Different reference points used in two measurement methods, i.e. anthropometric points (IBP) and Kinect points, represent similar, but not identical representation of human body. Measures of internal consistency (reliability) for assessed digitally measured variables demonstrated high reliability, but inappropriateness for clinical trials demanding extremely high precision. Since reliability of instruments in clinical and sport application differ, broad spectrum of useful specific diagnostic tools and instruments may be produced based on results assessed in this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boonbrahm, P., Sewata, L., Boonbrahm, S.: Transforming 2D human data into 3D model for augmented reality applications. Procedia Comput. Sci. 75(Vare), 28–33 (2015). https://doi.org/10.1016/j.procs.2015.12.193

    Article  Google Scholar 

  2. Cippitelli, E., Gasparrini, S., Spinsante, S., Gambi, E.: Kinect as a tool for gait analysis: validation of a real-time joint extraction algorithm working in side view. Sensors (Basel, Switzerland) 15(1), 1417–1434 (2015). https://doi.org/10.3390/s150101417

    Article  Google Scholar 

  3. Clarkson, S., Wheat, J., Heller, B., Choppin, S.: Assessment of a Microsoft Kinect-based 3D scanning system for taking body segment girth measurements: a comparison to ISAK and ISO standards. J. Sports Sci. 34(11), 1006–1014 (2016). https://doi.org/10.1080/02640414.2015.1085075

    Article  Google Scholar 

  4. Clarkson, S., Wheat, J., Heller, B., Choppin, S.: Assessing the suitability of the Microsoft Kinect for calculating person specific body segment parameters. In: 4th IEEE Workshop on Consumer Depth Cameras for Computer Vision, Zurich, Switzerland, 6 September 2014 (2014)

    Google Scholar 

  5. Dell Inc.: Dell Statistica (Data Analysis Software System), Version 12.7 (2016). software.dell.com

  6. De Rosario, H., Belda-Lois, J.M., Fos, F., Medina, E., Poveda-Puente, R., Kroll, M.: Correction of joint angles from Kinect for balance exercising and assessment. J. Appl. Biomech. 30(2), 294–299 (2014). https://doi.org/10.1123/jab.2013-0062

    Article  Google Scholar 

  7. Dutta, A., Chugh, S., Banerjee, A., Dutta, A.: Point-of-care-testing of standing posture with Wii balance board and Microsoft Kinect during transcranial direct current stimulation: a feasibility study. NeuroRehabilitation 34(4), 789–798 (2014). https://doi.org/10.3233/NRE-141077

    Article  Google Scholar 

  8. Espitia-Contreras, A., Sanchez-Caiman, P., Uribe-Quevedo, A.: Development of Kinect-Base Anthropometric Measurement Application. Industrial Engineering, Nueva Grenada Mil. University (2015)

    Google Scholar 

  9. Galna, B., et al.: Retraining function in people with Parkinson’s disease using the Microsoft Kinect: game design and pilot testing. J. NeuroEng. Rehabil. 11(1), 1–12 (2014). https://doi.org/10.1186/1743-0003-11-60

    Article  Google Scholar 

  10. Gao, Z., Yu, Y., Zhou, Y., Du, S.: Leveraging two Kinect sensors for accurate full-body motion capture. Sensors (Switzerland) 15(9), 24297–24317 (2015). https://doi.org/10.3390/s150924297

    Article  Google Scholar 

  11. Gasparrini, S., Cippitelli, E., Spinsante, S., Gambi, E.: A depth-based fall detection system using a Kinect® sensor. Sensors (Basel, Switzerland) 14(2), 2756–2775 (2014). https://doi.org/10.3390/s140202756

    Article  Google Scholar 

  12. Katović, D., et al.: Development of computer system for digital measurement of human body: initial findings. In: Proceedings of the 4th International Congress on Sport Sciences Research and Technology Support, icSPORTS, vol. 1, pp. 147–153 (2016). ISBN 978-989-758-205-9. https://doi.org/10.5220/0006086001470153

  13. Lim, D., Kim, C., Jung, H., Jung, D., Chun, K.: Use of the Microsoft Kinect system to characterize balance ability during balance training. Clin. Interv. Aging 10, 1077–1083 (2015). https://doi.org/10.2147/CIA.S85299

    Article  Google Scholar 

  14. Lun, R., Zhao, W.: A survey of applications and human motion recognition with Microsoft Kinect. Int. J. Pattern Recogn. Artif. Intell. 29 (2015). http://doi.org/10.1142/S0218001415550083

  15. Mentiplay, B.F., Clark, R.A., Mullins, A., Bryant, A.L., Bartold, S., Paterson, K.: Reliability and validity of the Microsoft Kinect for evaluating static foot posture. J. Foot Ankle Res. 6(1), 14 (2013). https://doi.org/10.1186/1757-1146-6-14

    Article  Google Scholar 

  16. Mišigoj-Duraković, M.: Kinantropologija: biološki aspekti tjelesnog vježbanja. Kineziološki fakultet Sveučilišta u Zagrebu, Zagreb (2008)

    Google Scholar 

  17. Mobini, A., Behzadipour, S., Saadat, M.: Test-retest reliability of Kinect’s measurements for the evaluation of upper body recovery of stroke patients. Biomed. Eng. Online 1–13 (2015). http://doi.org/10.1186/s12938-015-0070-0

  18. Motiian, S., Pergami, P., Guffey, K., Mancinelli, C.A., Doretto, G.: Automated extraction and validation of children’s gait parameters with the Kinect. Biomed. Eng. Online 14(112), 1–36 (2015). https://doi.org/10.1186/s12938-015-0102-9

    Article  Google Scholar 

  19. Oh, B.-L., Kim, J., Kim, J., Hwang, J.-M., Lee, J.: Validity and reliability of head posture measurement using Microsoft Kinect. Br. J. Ophthalmol. 1–5 (2014). http://doi.org/10.1136/bjophthalmol-2014-305095

  20. Pfister, A., West, A.M., Bronner, S., Noah, J.A.: Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis. J. Med. Eng. Technol. 1902(5), 1–7 (2014). https://doi.org/10.3109/03091902.2014.909540

    Article  Google Scholar 

  21. Procházka, A., Vyšata, O., Vališ, M., Ťupa, O., Schätz, M., Mařík, V.: Use of the image and depth sensors of the Microsoft Kinect for the detection of gait disorders. Neural Comput. Appl. 26(7), 1621–1629 (2015). https://doi.org/10.1007/s00521-015-1827-x

    Article  Google Scholar 

  22. Robinson, M., Parkinson, M.B.: Estimating anthropometry with Microsoft Kinect. In: Proceedings of the 2nd International Digital Human Modeling Symposium, May 2013

    Google Scholar 

  23. Saenz-de-Urturi, Z., Garcia-Zapirain Soto, B.: Kinect-based virtual game for the elderly that detects incorrect body postures in real time. Sensors 16(5), 704 (2016). https://doi.org/10.3390/s16050704

    Article  Google Scholar 

  24. Samejima, I., Maki, K., Kagami, S., Kouchi, M., Mizoguchi, H.: A body dimensions estimation method of subject from a few measurement items using Kinect. In: Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, pp. 3384–3389 (2012). http://doi.org/10.1109/ICSMC.2012.6378315

  25. Sevick, M., Eklund, E., Mensch, A., Foreman, M., Standeven, J., Engsberg, J.: Using free internet videogames in upper extremity motor training for children with cerebral palsy. Behav. Sci. 6(2), 10 (2016). https://doi.org/10.3390/bs6020010

    Article  Google Scholar 

  26. Shapi’i, A., Bahari, N.N., Arshad, H., Zin, N.A.M., Mahayuddin, Z.R.: Rehabilitation exercise game model for post-stroke using Microsoft Kinect camera. In: 2015 2nd International Conference on Biomedical Engineering (ICoBE), pp. 1–6, March 2015. http://doi.org/10.1109/ICoBE.2015.7235882

  27. Springer, S., Seligmann, G.Y.: Validity of the Kinect for gait assessment: a focused review. Sensors (Switzerland) 16(2), 1–13 (2016). https://doi.org/10.3390/s16020194

    Article  Google Scholar 

  28. Taha, Z., Hassan, M.S.S., Yap, H.J., Yeo, W.K.: Preliminary investigation of an innovative digital motion analysis device for badminton athlete performance evaluation. Procedia Eng. 147, 461–465 (2016). https://doi.org/10.1016/j.proeng.2016.06.341

    Article  Google Scholar 

  29. Xu, H., Yu, Y., Zhou, Y., Li, Y., Du, S.: Measuring accurate body parameters of dressed humans with large-scale motion using a Kinect sensor. Sensors (Basel, Switzerland) 13(9), 11362–11384 (2013). https://doi.org/10.3390/s130911362

    Article  Google Scholar 

  30. Zhang, Y., Zheng, J., Magnenat-Thalmann, N.: Example-guided anthropometric human body modeling. Vis. Comput. 31(12), 1615–1631 (2015). https://doi.org/10.1007/s00371-014-1043-1

    Article  Google Scholar 

Download references

Acknowledgements

Research was conducted by joint Research Group of Laboratory for Sports Medicine & Exercise - Kinantropometry and Biomechanics Laboratory of the Institute of Kinesiology, Faculty of Kinesiology, as a part of joint IRCRO project “Development of a Computer System for Digital Measurements of the Human Body”, between the Faculty of Kinesiology and companies Live Good j.d.o.o. and CITUS d.o.o. Initial conclusions were presented at icSPORTS 2016 in Porto, Portugal [12]. Authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Gruić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gruić, I., Katović, D., Bušić, A., Bronzin, T., Medved, V., Mišigoj-Duraković, M. (2019). Construction and Validation of Protocol for Digital Measurement of Human Body. In: Cabri, J., Pezarat-Correia, P., Vilas-Boas, J. (eds) Sport Science Research and Technology Support. icSPORTS icSPORTS 2016 2017. Communications in Computer and Information Science, vol 975. Springer, Cham. https://doi.org/10.1007/978-3-030-14526-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14526-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14525-5

  • Online ISBN: 978-3-030-14526-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics