Skip to main content

Brood Reduction in Neotropical Birds: Mechanisms, Patterns, and Insights from Studies in the Imperial Shag (Phalacrocorax atriceps)

  • Chapter
  • First Online:
Behavioral Ecology of Neotropical Birds

Abstract

Brood reduction is a within-brood partial mortality due to sibling rivalry and has been observed in a large number of bird species from diverse taxa. Here, I summarize several hypotheses accounting for the adaptive value of brood reduction and discuss different factors that modulate it. A description of different brood reduction systems is made with focus on Neotropical birds. Finally, an integrative approach analyzing brood reduction in Imperial Shags (Phalacrocorax atriceps) is presented to illustrate causes, consequences, and benefits of this breeding strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander RD (1974) The evolution of social behaviour. Annu Rev Ecol Syst 5:325–383

    Article  Google Scholar 

  • Amundsen T, Slagsvold T (1991a) Asynchronous hatching in the pied flycatcher: an experiment. Ecology 72:797–804

    Article  Google Scholar 

  • Amundsen T, Slagsvold T (1991b) Hatching asynchrony: facilitating adaptive or maladaptive brood reduction? Proc Int Ornithol Congr 20:1707–1719

    Google Scholar 

  • Anderson DJ (1989) The role of hatching asynchrony in siblicidal brood reduction of two booby species. Behav Ecol Sociobiol 25:363–368

    Article  Google Scholar 

  • Anderson DJ (1990) Evolution of obligate siblicide in boobies. 1. A test of the insurance–egg hypothesis. Am Nat 135:334–350

    Article  Google Scholar 

  • Anderson DJ, Ricklefs RE (1995) Evidence of kin–selected tolerance by nestlings in a siblicidal bird. Behav Ecol Sociobiol 37:163–168

    Article  Google Scholar 

  • Anderson DJ, Reeve J, Gomez JEM, Weathers WW, Hutson S, Cunningham HV, Bird DM (1993) Sexual size dimorphism and food requirements of nestling birds. Can J Zool 71:2541–2545

    Article  Google Scholar 

  • Aparicio JM (1999) Intraclutch egg–size variation in the Eurasian Kestrel: advantages and disadvantages of hatching from large eggs. Auk 116:825–830

    Article  Google Scholar 

  • Barrionuevo M, Frere E (2017) An experimental approach to the brood reduction hypothesis in Magellanic penguins. J Avian Biol 48:1077–1086

    Article  Google Scholar 

  • Beissinger SR, Waltman JR (1991) Extraordinary clutch size and hatching asynchrony of a Neotropical parrot. Auk 108:863–871

    Google Scholar 

  • Berkunsky I, Segura LN, Ruggera RA, Faegre SIK, Trofino-Falasco C, López FG, Velasco MA, Kacoliris FP, Aramburú RM, Reboreda JC (2017) Reproductive parameters of the Turquoise–fronted Parrot (Amazona aestiva) in the dry Chaco forest. Avian Conserv Ecol 12:6–14

    Article  Google Scholar 

  • Bortolotti GR, Wiebe KL, Iko WM (1991) Cannibalism of nestling American Kestrels by their parents and siblings. Can J Zool 69:1447–1453

    Article  Google Scholar 

  • Calderón L, Svagelj WS, Quintana F, Lougheed S, Tubaro P (2012) No evidence of extra–pair paternity or intraspecific brood parasitism in the Imperial Shag Phalacrocorax atriceps. J Ornithol 153:399–404

    Article  Google Scholar 

  • Cash KJ, Evans RM (1986) Brood reduction in the American White Pelican (Pelecanus erythrorhynchos). Behav Ecol Sociobiol 18:413–418

    Article  Google Scholar 

  • Charnov EL, Krebs JR (1974) On clutch size and fitness. Ibis 116:217–219

    Article  Google Scholar 

  • Christians JK (2002) Avian egg size: variation within species and inflexibility within individuals. Biol Rev 77:1–26

    Article  PubMed  Google Scholar 

  • Clark AB, Wilson DS (1981) Avian breeding adaptations: hatching asynchrony, brood reduction, and nest failure. Q Rev Biol 56:253–277

    Article  Google Scholar 

  • Clifford LD, Anderson DJ (2001a) Experimental demonstration of the insurance value of extra eggs in an obligately siblicidal seabird. Behav Ecol 12:340–347

    Article  Google Scholar 

  • Clifford LD, Anderson DJ (2001b) Food limitation explains most clutch size variation in the Nazca booby. J Anim Ecol 70:539–545

    Article  Google Scholar 

  • Derenne P, Mary G, Mougin JL (1976) Le cormoran a ventre blanc Phalacrocorax albiventer melanogenis (Blyth) de L’Archipel Crozet. Comité Natl Fr Rech Antarct 40:191–220

    Google Scholar 

  • Dorward DF (1962) Comparative biology of the White Booby and the Brown Booby Sula spp. at Ascension. Ibis 103:174–220

    Google Scholar 

  • Drummond H, García Chavelas C (1989) Food shortage influences sibling aggression in the Blue–footed booby. Anim Behav 37:806–819

    Article  Google Scholar 

  • Drummond H, Osorno JL (1992) Training siblings to be submissive losers: dominance between booby nestlings. Anim Behav 44:881–893

    Article  Google Scholar 

  • Drummond H, Rodríguez C (2013) Costs of growing up as a subordinate sibling are passed to the next generation in Blue–footed boobies. J Evol Biol 26:625–634

    Article  CAS  PubMed  Google Scholar 

  • Drummond H, Gonzalez E, Osorno JL (1986) Parent–offspring cooperation in the Blue–footed booby (Sula nebouxii). Behav Ecol Sociobiol 19:365–372

    Article  Google Scholar 

  • Drummond H, Osorno JL, Torres R, García C, Merchant H (1991) Sexual dimorphism and sibling competition: implications for avian sex ratios. Am Nat 138:623–641

    Article  Google Scholar 

  • Drummond H, Torres R, Krishnan VV (2003) Buffered development: resilience after aggressive subordination in infancy. Am Nat 161:794–807

    Article  PubMed  Google Scholar 

  • Drummond H, Rodríguez C, Oro D (2011) Natural poor start does not increase mortality over the lifetime. Proc R Soc Lond B 278:3421–3427

    Article  CAS  Google Scholar 

  • Duré Ruiz NM, Mermoz ME, Fernández GJ (2008) Effect of cowbird parasitism on brood reduction in the Brown–and–yellow Marshbird. Condor 110:507–513

    Article  Google Scholar 

  • Edwards TC Jr, Collopy MW (1983) Obligate and facultative brood reduction in eagles: an examination of factors that influence fratricide. Auk 100:630–635

    Google Scholar 

  • FjeldsÃ¥ J (1986) Feeding ecology and possible life history tactics of the Hooded Grebe Podiceps gallardoi. Ardea 74:40–58

    Google Scholar 

  • Forbes LS (1990) Insurance offspring and the evolution of avian clutch size. J Theor Biol 147:345–359

    Article  Google Scholar 

  • Forbes S (2007) Sibling symbiosis in nestling birds. Auk 124:1–10

    Article  Google Scholar 

  • Forbes LS, Mock DW (1994) Proximate and ultimate determinants of avian brood reduction. In: Parmigiani S, vom Saal F (eds) Infanticide and parental care. Harwood Academic Publishers, Chur, pp 237–256

    Google Scholar 

  • Forbes LS, Mock DW (1998) Parental optimism and progeny choice: when is screening for offspring quality affordable? J Theor Biol 192:3–14

    Article  CAS  PubMed  Google Scholar 

  • Forbes S, Mock DW (2000) A tale of two strategies: life–history aspects of family strife. Condor 102:23–34

    Article  Google Scholar 

  • Forbes S, Thornton S, Glassey B, Forbes M, Buckley NJ (1997) Why parent birds play favourites. Nature 390:351–352

    Article  CAS  Google Scholar 

  • Gil D, Graves J, Hazon N, Wells A (1999) Male attractiveness and differential testosterone investment in zebra finch eggs. Science 286:126–128

    Article  CAS  PubMed  Google Scholar 

  • Giudici PI, Quintana F, Svagelj WS (2017) The role of hatching asynchrony in a seabird species exhibiting obligate brood reduction. Waterbirds 40:221–232

    Article  Google Scholar 

  • Glassey B, Forbes S (2002) Begging and asymmetric nestling competition. In: Wright J, Leonard ML (eds) Evolution of nestling begging: competition, cooperation and communication. Kluwer Academic, Dordrecht, pp 269–281

    Chapter  Google Scholar 

  • Guerra M, Drummond H (1995) Reversed sexual size dimorphism and parental care: minimal division of labour in the Blue footed booby. Behaviour 132:479–496

    Article  Google Scholar 

  • Harris MP (1979) Population dynamics of the flightless cormorant Nannopterum harrisi. Ibis 121:135–146

    Article  Google Scholar 

  • Holley AJF (1981) Naturally arising adoption in the herring gull. Anim Behav 29:302–303

    Article  Google Scholar 

  • Howe HF (1976) Egg size, hatching asynchrony, sex, and brood reduction in the common grackle. Ecology 57:1195–1207

    Article  Google Scholar 

  • Humphries CA, Arevalo VD, Fischer KN, Anderson DJ (2006) Contributions of marginal offspring to reproductive success of Nazca Booby (Sula granti) parents: test of multiple hypotheses. Oecologia 147:379–390

    Article  PubMed  Google Scholar 

  • Ingram C (1959) The importance of juvenile cannibalism in the breeding biology of certain birds of prey. Auk 76:218–226

    Article  Google Scholar 

  • Kalmbach E, Becker PH (2005) Growth and survival of Neotropic cormorant (Phalacrocorax brasilianus) chicks in relation to hatching order and brood size. J Ornithol 146:91–98

    Article  Google Scholar 

  • Kozlowski J, Stearns SC (1989) Hypotheses for the production of excess zygotes: models of bet–hedging and selective abortion. Evolution 43:1369–1377

    Article  PubMed  Google Scholar 

  • Krijgsveld KL, Dijkstra C, Visser GH, Daan S (1998) Energy requirements for growth in relation to sexual size dimorphism in Marsh Harrier Circus aeruginosus nestlings. Physiol Zool 71:693–702

    Article  CAS  PubMed  Google Scholar 

  • Lack D (1947) The significance of clutch size. Ibis 89:302–352

    Article  Google Scholar 

  • Lack D (1954) The natural regulation of animal numbers. Clarendon Press, Oxford

    Google Scholar 

  • Lamey TC (1990) Hatch asynchrony and brood reduction in penguins. In: Davies LS, Darby JT (eds) Penguin biology. Academic, San Diego, pp 399–416

    Google Scholar 

  • Lipar JL, Ketterson ED (2000) Maternally derived yolk testosterone enhances the development of the hatching muscle in the red-winged blackbird Agelaius phoeniceus. Proc R Soc Lond B 267:2005–2010

    Article  CAS  Google Scholar 

  • Lipar JL, Ketterson ED, Nolan V Jr (1999) Intra-clutch variation in testosterone content of red-winged blackbird eggs. Auk 116:231–235

    Article  Google Scholar 

  • Magrath RD (1990) Hatching asynchrony in altricial birds. Biol Rev 65:587–622

    Article  Google Scholar 

  • Mock DW (1984) Infanticide, siblicide, and avian nestling mortality. In: Hausfater G, Hrdy SB (eds) Infanticide: comparative and evolutionary perspectives. Aldine Publishing Co, New York, pp 3–30

    Google Scholar 

  • Mock DW (1994) Brood reduction: narrow sense, broad sense. J Avian Biol 25:3–7

    Article  Google Scholar 

  • Mock DW, Forbes LS (1995) The evolution of parental optimism. Trends Ecol Evol 10:130–134

    Article  CAS  PubMed  Google Scholar 

  • Mock DW, Parker GA (1997) The evolution of sibling rivalry. Oxford University Press, Oxford

    Google Scholar 

  • Nelson JB (2005) Pelicans, cormorants and their relatives. The Pelecaniformes. Oxford University Press, Oxford

    Google Scholar 

  • Nuechterlein GL, Johnson A (1981) The downy young of the Hooded Grebe. Living Bird 19:69–71

    Google Scholar 

  • Nuñez de la Mora A, Drummond H, Wingfield JC (1996) Hormonal correlates of dominance and starvation–induced aggression in chicks of the Blue–footed booby. Ethology 102:748–761

    Article  Google Scholar 

  • Osorno JL, Drummond H (1995) The function of hatching asynchrony in the Blue–footed Booby. Behav Ecol Sociobiol 37:265–273

    Article  Google Scholar 

  • Ostreiher R, Heifetz A (2016) The blessing of having younger nestmates: the case of the Arabian babbler. Behav Ecol 27:393–400

    Article  Google Scholar 

  • Parsons J (1972) Egg size, laying date and incubation period in the Herring Gull, Larus argentatus. Ibis 114:536–541

    Article  Google Scholar 

  • Pierotti R (1991) Infanticide versus adoption: an intergenerational conflict. Am Nat 138:1140–1158

    Article  Google Scholar 

  • Pierotti R, Murphy EC (1987) Intergenerational conflicts in gulls. Anim Behav 35:435–444

    Article  Google Scholar 

  • Ploger BJ (1997) Does brood reduction provide nestling survivors with a food bonus? Anim Behav 54:1063–1076

    Article  CAS  PubMed  Google Scholar 

  • Quintana F, Wilson RP, Dell’Arciprete P, Shepard ELC, Gómez-Laich A (2011) Women from Venus, men from Mars: inter–sex foraging differences in the Imperial Cormorant Phalacrocorax atriceps, a colonial seabird. Oikos 120:350–358

    Article  Google Scholar 

  • Ricklefs RE (1965) Brood reduction in the curve–billed thrasher. Condor 67:505–510

    Article  Google Scholar 

  • Ricklefs RE (2002) Sibling competition and the evolution of brood size and development rate in birds. In: Wright J, Leonard ML (eds) The evolution of begging. Competition, cooperation and communication. Kluwer Academic, Dordrecht, pp 283–301

    Google Scholar 

  • Riedman ML (1982) The evolution of alloparental care and adoption in mammals and birds. Q Rev Biol 57:405–435

    Article  Google Scholar 

  • Roesler CI (2016) Conservación del Macá Tobiano (Podiceps gallardoi): factores que afectan la viabilidad de sus poblaciones. Dissertation, University of Buenos Aires

    Google Scholar 

  • Schwabl H (1993) Yolk is a source of maternal testosterone for developing birds. PNAS 90:11446–11450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwabl H (1996) Maternal testosterone in the avian egg enhances postnatal growth. Comp Biochem Physiol 114:271–276

    Article  CAS  Google Scholar 

  • Schwabl H, Lipar J (2002) Hormonal regulation of begging behavior. In: Wright J, Leonard ML (eds) Evolution of nestling begging: competition, cooperation and communication. Kluwer Academic, Dordrecht, pp 221–244

    Chapter  Google Scholar 

  • Schwabl H, Mock DW, Gieg JA (1997) A hormonal mechanism for parental favouritism. Nature 386:231

    Article  CAS  Google Scholar 

  • Shaw P (1985) Brood reduction in the Blue–eyed Shag Phalacrocorax atriceps. Ibis 127:476–494

    Article  Google Scholar 

  • Simmons R (1988) Offspring quality and the evolution of Cainism. Ibis 130:339–357

    Article  Google Scholar 

  • Slagsvold T, Sandvik J, Rofstad G, Lorentsen Ö, Husby M (1984) On the adaptive value of intraclutch egg–size variation in birds. Auk 101:685–697

    Article  Google Scholar 

  • Snow BK (1966) Observations on the behaviour and ecology of the Flightless cormorant Nannopterum harrisi. Ibis 108:265–280

    Article  Google Scholar 

  • Sockman KW, Schwabl H (2000) Yolk androgens reduce offspring survival. Proc R Soc Lond B 267:1451–1456

    Article  CAS  Google Scholar 

  • Stanback MT, Koenig WD (1992) Cannibalism in birds. In: Elgar MA, Crespi BJ (eds) Cannibalism: ecology and evolution among diverse taxa. Oxford University Press, Oxford, pp 277–298

    Google Scholar 

  • Stoleson SH, Beissinger SR (1995) Hatching asynchrony and the onset of incubation in birds, revisited. When is the critical period? Curr Ornithol 12:191–270

    Article  Google Scholar 

  • Svagelj WS (2009) Breeding ecology of dimorphic seabirds in relation to parental investment and brood sex ratio theories. Dissertation, University of Buenos Aires

    Google Scholar 

  • Svagelj WS, Quintana F (2007) Sexual size dimorphism and sex determination by morphometric measurements in breeding Imperial Shags (Phalacrocorax atriceps). Waterbirds 30:97–102

    Article  Google Scholar 

  • Svagelj WS, Quintana F (2011a) Breeding performance of the Imperial Shag (Phalacrocorax atriceps) in relation to year, laying date and nest location. Emu 111:162–165

    Article  Google Scholar 

  • Svagelj WS, Quintana F (2011b) Egg–size variation in the Imperial Cormorant: on the importance of individual effects. Condor 113:528–537

    Article  Google Scholar 

  • Svagelj WS, Quintana F (2017) Sex–specific growth in the Imperial Cormorant (Phalacrocorax atriceps): when does dimorphism arise? Waterbirds 40:154–161

    Article  Google Scholar 

  • Svagelj WS, Trivellini MM, Quintana F (2012) Parental investment theory and nest defence by Imperial Shags: effects of offspring number, offspring age, laying date and parent sex. Ethology 118:251–259

    Article  Google Scholar 

  • Temme DH, Charnov EL (1987) Brood size adjustment in birds: economical tracking in a temporally varying environment. J Theor Biol 126:137–147

    Article  Google Scholar 

  • Uller T (2006) Sex–specific sibling interactions and offspring fitness in vertebrates: pattern and implications for maternal sex ratios. Biol Rev 81:207–217

    Article  PubMed  Google Scholar 

  • Urrutia LP, Drummond H (1990) Brood reduction and parental infanticide in Heermann’s gull. Auk 107:772–774

    Article  Google Scholar 

  • Valderrábano Ibarra C, Brumón I, Drummond H (2007) Development of a linear dominance hierarchy in nestling birds. Anim Behav 74:1705–1714

    Article  Google Scholar 

  • Wiebe KL (1996) The insurance–egg hypothesis and extra reproductive value of last-laid eggs in clutches of American kestrels. Auk 113:258–261

    Article  Google Scholar 

  • Williams TD (1994) Intraspecific variation in egg size and egg composition in birds: effects on offspring fitness. Biol Rev 68:35–59

    Article  Google Scholar 

  • Williams AJ, Burger AE (1979) Aspects of the breeding biology of the Imperial Cormorant, Phalacrocorax atriceps, at Marion Island. Le Gerfaut 69:407–423

    Google Scholar 

  • Yorio P, Quintana F, Campagna C, Harris G (1994) Diversidad, abundancia y dinámica espacio–temporal de la colonia mixta de aves marinas en Punta León, Patagonia. Ornitol Neotrop 5:69–77

    Google Scholar 

  • ZieliÅ„ski P (2002) Brood reduction and parental infanticide. Are the White Stork Ciconia ciconia and the Black Stork C. nigra exceptional? Acta Ornithol 37:113–119

    Article  Google Scholar 

Download references

Acknowledgments

Walter S. Svagelj is a research fellow of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Svagelj, W.S. (2019). Brood Reduction in Neotropical Birds: Mechanisms, Patterns, and Insights from Studies in the Imperial Shag (Phalacrocorax atriceps). In: Reboreda, J., Fiorini, V., Tuero, D. (eds) Behavioral Ecology of Neotropical Birds. Springer, Cham. https://doi.org/10.1007/978-3-030-14280-3_5

Download citation

Publish with us

Policies and ethics