Skip to main content

Assessing the Potential for Pain in Crustaceans and Other Invertebrates

  • Chapter
  • First Online:
The Welfare of Invertebrate Animals

Part of the book series: Animal Welfare ((AWNS,volume 18))

Abstract

All animals face hazards that cause tissue damage, and most have nociceptive reflex responses that protect them from such damage. However, some taxa have also evolved the capacity for pain experience, presumably to enhance long-term protection through behaviour modification based on memory of the unpleasant nature of pain. In this review, I consider various criteria that might help to distinguish nociception from pain. Because nociceptors are so taxonomically widespread, simply demonstrating their presence is not sufficient. Further, investigation of the central nervous system provides limited clues about the potential to experience pain. Opioids and other analgesics might indicate a central modulation of responses, but often, peripheral effects could explain the analgesia. Thus, reduction of responses by analgesics and opioids does not allow clear discrimination between nociception and pain. Physiological changes in response to noxious stimuli or the threat of a noxious stimulus might prove useful, but, to date, application to invertebrates is limited. Behaviour of the organism provides the greatest insights. Rapid avoidance learning and prolonged memory indicate central processing rather than mere reflexes and are consistent with the experience of pain. Complex, prolonged grooming or rubbing may demonstrate an awareness of the specific site of stimulus application. Trade-offs with other motivational systems indicate central processing, and an ability to use complex information suggests sufficient cognitive ability for the animal to have a fitness benefit from a pain experience. Recent evidence of fitness enhancing, anxiety-like states is also consistent with the idea of pain. Thus, available data go beyond the idea of just nociception, but the impossibility of total proof of pain means they are not definitive. Nevertheless, more humane care for invertebrates is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal M, Guzmán G, Morales-Matos C, Del Valle Díaz RA, Abramson I, Giray T (2011) Dopamine and octopamine influence avoidance learning of honey bees in a place preference assay. PLoS One 6:e25371. https://doi.org/10.1371/journal.pone.0025371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alupay JS, Hadjisolomou SP, Crook RJ (2014) Arm injury produces long-term behavioural and neural hypersensitivity in octopus. Neurosci Lett 558:137–142

    Article  CAS  PubMed  Google Scholar 

  • Andrews PLR, Darmaillacq AS, Dennison N et al (2013) The identification and management of pain, suffering and distress in cephalopods, including an aesthesia, analgesia and humane killing. J Exp Mar Biol Ecol 447:46–64. https://doi.org/10.1016/j.jembe.2013.02.010

    Article  Google Scholar 

  • Appel M, Elwood RW (2009a) Motivational trade-offs and the potential for pain experience in hermit crabs. Appl Anim Behav Sci 119:120–124

    Article  Google Scholar 

  • Appel M, Elwood RW (2009b) Gender differences, responsiveness and memory of a potentially painful event in hermit crabs. Anim Behav 78:1373–1379

    Article  Google Scholar 

  • Barr S (2009) Pain experience in crustaceans? Unpublished Ph.D. thesis, Queen’s University, Belfast

    Google Scholar 

  • Barr S, Elwood RW (2011) No evidence of morphine analgesia to noxious shock in the shore crab, Carcinus maenas. Behav Processes 86:340–344

    Article  PubMed  Google Scholar 

  • Barr S, Laming PR, Dick JTA, Elwood RW (2008) Nociception or pain in a decapod crustacean? Anim Behav 75:745–751

    Article  Google Scholar 

  • Bateson P (1991) Assessment of pain in animals. Anim Behav 42:827–839

    Article  Google Scholar 

  • Bergmann M, Taylor AC, Moore PG (2001) Physiological stress in decapod crustaceans (Munida rugosa and Liocarcinus depurator) discarded in the Clyde Nephrops fishery. J Exp Mar Biol Ecol 259:215–229

    Article  CAS  PubMed  Google Scholar 

  • Besson JM, Chaouch A (1987) Peripheral and spinal mechanisms of nociception. Physiol Rev 67:67–186

    Article  CAS  PubMed  Google Scholar 

  • Bhimani R, Huber R (2016) Operant avoidance learning in crayfish, Orconectes rusticus: computational ethology and the development of an automated learning paradigm. Learn Behav 44:239–249. https://doi.org/10.3758/s13420-015-0205-y

    Article  PubMed  Google Scholar 

  • Birch J (2017) The burden of proof for animal sentience. Anim Sentience 16

    Google Scholar 

  • Bolles RC (1970) Species-specific defense reactions and avoidance learning. Psychol Rev 77:32–48

    Article  Google Scholar 

  • Briffa M, Sneddon LU, Wilson AJ (2015) Animal personality as a cause and consequence of contest behaviour. Biol Lett 11:20141007. https://doi.org/10.1098/rsbl.2014.1007

    Article  PubMed  PubMed Central  Google Scholar 

  • Broom DM (2001) Evolution of pain. In: Lord Soulsby EJL, Morton D (eds) Pain: its nature and management in man and animals, Royal Society of Medicine International Congress Symposium Series, vol 246. Royal Society of Medicine, London, pp 17–25

    Google Scholar 

  • Broom DM (2007) Cognitive ability and sentience: which aquatic animals should be protected? Dis Aquat Org 75:99–108

    Article  CAS  Google Scholar 

  • Broom DM (2014) Sentience and animal welfare. CABI, Wallingford

    Book  Google Scholar 

  • Brownstein MJ (1993) A brief history of opiates, opioid peptides and opioid receptors. Proc Natl Acad Sci U S A 90:5391–5393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burrell BD (2017) Comparative biology of pain: what invertebrates can tell us about how nociception works. J Neurophysiol 117:1461–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chittka L, Niven J (2009) Are bigger brains better? Curr Biol 19:R995–R1008

    Article  CAS  PubMed  Google Scholar 

  • Colpaert FC, De Witte P, Marole AN, Awouters F, Niemegeers E, Janssen PAJ (1980) Self-administration of the analgesic suprofen in arthritis rats: Mycobacterium butyricum-induced arthritis as an experiment model of chronic pain. Life Sci 27:921–928

    Article  CAS  PubMed  Google Scholar 

  • Crook RJ, Walters ET (2011) Nociceptive behaviour and physiology of molluscs: animal welfare implications. ILAR J 52:185–195

    Article  CAS  PubMed  Google Scholar 

  • Crook RJ, Lewis T, Roger T, Hanlon RT, Walters ET (2011) Peripheral injury induces long-term sensitization of defensive responses to visual and tactile stimuli in the squid Loligo pealeii, Lesueur 1821. J Exp Biol 214:3173–3185

    Article  PubMed  PubMed Central  Google Scholar 

  • Crook RJ, Hanlon RT, Walters ET (2013) Squid have nociceptors that display widespread longterm sensitization and spontaneous activity after bodily injury. J Neurosci 33:10021–10026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crook RJ, Dickson K, Hanlon RT, Walters ET (2014) Nociceptive sensitization reduces predation risk. Curr Biol 24:1121–1125

    Article  CAS  PubMed  Google Scholar 

  • Darmaillacq AS, Dickel L, Chichery MP, Agin V, Chichery R (2004) Rapid taste aversion learning in adult cuttlefish, Sepia officinalis. Anim Behav 68:1291–1298

    Article  Google Scholar 

  • Dunn PDC, Barnes WJP (1981) Learning of leg position in the shore crab, Carduus maenas. Mar Behav Physiol 8:67–82

    Article  Google Scholar 

  • Dyakonova VE (2001) Role of opioid peptides in behaviour of invertebrates. J Evol Biochem Physiol 37:335–347

    Article  CAS  Google Scholar 

  • Dyer AG, Neumeyer C (2005) Simultaneous and successive colour discrimination in the honeybee (Apis mellifera). J Comp Physiol A 191:547–557

    Article  Google Scholar 

  • Dyuizen IV, Kotsyuba EP, Lamash NE (2012) Changes in the nitric oxide system in the shore crab Hemigrapsus sanguineus (Crustacea, Decapoda) CNS induced by a nociceptive stimulus. J Exp Biol 215:2668–2676

    Article  CAS  PubMed  Google Scholar 

  • Eisner T, Camazine S (1983) Spider leg autotomy induced by prey venom injection: an adaptive response to “pain”? Proc Natl Acad Sci U S A 80:3382–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elphik MR (2012) The evolution and comparative neurobiology of endocannabinoid signalling. Philos Trans R Soc Lond B Biol Sci 367:3201–3215

    Article  CAS  Google Scholar 

  • Elwood RW, Stewart A (1985) The timing of decisions during shell investigation by the hermit crab, Pagurus bernhardus. Anim Behav 33:620–627

    Article  Google Scholar 

  • Elwood RW (1995) Motivational change during resource assessment in hermit crabs. J Exp Mar Biol Ecol 193:41–55

    Article  Google Scholar 

  • Elwood RW (2011) Pain and suffering in invertebrates? ILAR J 52:175–184

    Article  CAS  PubMed  Google Scholar 

  • Elwood RW (2012) Evidence for pain in decapod crustaceans. Anim Welf 21:23–27

    Article  CAS  Google Scholar 

  • Elwood RW, Adams L (2015) Electric shock causes physiological stress responses in shore crabs, consistent with prediction of pain. Biol Lett 11:20150800. https://doi.org/10.1098/rsbl.2015

    Article  PubMed  PubMed Central  Google Scholar 

  • Elwood RW, Appel M (2009) Pain in hermit crabs? Anim Behav 77:1243–1246

    Article  Google Scholar 

  • Elwood RW, Barr S, Patterson L (2009) Pain and stress in crustaceans? Appl Anim Behav Sci 118:128–136

    Article  Google Scholar 

  • Elwood RW, Dalton N, Riddell G (2017) Aversive responses by shore crabs to acetic acid but not to capsaicin. Behav Processes 140:1–5

    Article  PubMed  Google Scholar 

  • Fathala M, Maldonado H (2011) Shelter use during exploratory and escape behaviour of the crab Chasmagnathus granulatus: a field study. J Ethol 29:263–273. https://doi.org/10.1007/s10164-010-0253-x

    Article  Google Scholar 

  • Fiorito G (1986) Is there ‘pain’ in invertebrates? Behav Processes 12:383–388

    Article  CAS  PubMed  Google Scholar 

  • Fossat P, Bacque-Cazenave J, De Deurwaerdere P, Delbecque J-P, Cattaert D (2014) Anxiety-like behavior in crayfish is controlled by serotonin. Science 344:1293–1297

    Article  CAS  PubMed  Google Scholar 

  • Fossat P, Bacque-Cazenave J, De Deurwaerdere P, Cattaert D, Delbecque J-P (2015) Serotonin, but not dopamine, controls stress response and anxiety-like behavior in crayfish, Procambarus clarkii. J Exp Biol 218:2745–2752

    Article  PubMed  Google Scholar 

  • Gentle MJ, Corr SA (1995) Endogenous analgesia in the chicken. Neurosci Lett 201:211–214

    Article  CAS  PubMed  Google Scholar 

  • Gerber B, Yarali A, Diegelmann S, Wotjak CT, Pauli P, Fendt M (2014) Pain-relief learning in flies, rats, and man: basic research and applied perspectives. Learn Mem 21:232–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Graindorge N, Jozet-Alves C, Chichery R, Dickel L, Bellenger C (2008) Does kainic acid induce partial brain lesion in an invertebrate model: Sepia officinalis: comparison with electrolytic lesion. Brain Res 1238:44–52

    Article  CAS  PubMed  Google Scholar 

  • Groening J, Venini D, Srinivasan MV (2017) In search of evidence for the experience of pain in honeybees: a self-administration study. Sci Rep 7:45825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison LM, Kastin AJ, Weber JT, Banks WA, Hurley DL, Zadina JE (1994) The opiate system in invertebrates. Peptides 15:1309–1329

    Article  CAS  PubMed  Google Scholar 

  • Hoyle G (1976) Learning of leg position by the ghost crab Ocypode ceratophthalma. Behav Biol 18:147–163

    Article  CAS  PubMed  Google Scholar 

  • IASP (1979) Pain terms: a list with definitions and notes on usage. Pain 6:249–252

    Google Scholar 

  • Ijichi C, Collins L, Elwood RW (2014) Pain expression is linked to personality in horses. Appl Anim Behav Sci 152:38–43

    Article  Google Scholar 

  • Kawai N, Kono R, Sugimoto S (2004) Avoidance learning in the crayfish (Procambarus clarkii) depends on the predatory imminence of the unconditioned stimulus: a behaviour systems approach to learning in invertebrates. Behav Brain Res 150:229–237

    Article  PubMed  Google Scholar 

  • Kellert RS (1993) Values and perceptions of invertebrates. Conserv Biol 7:845–855

    Article  Google Scholar 

  • Key B (2016) Why fish do not feel pain. Anim Sentience 3

    Google Scholar 

  • Klein C, Barron AB (2016) Insects have the capacity for subjective experience. Anim Sentience 100:1–19

    Google Scholar 

  • Loeser JD, Treede RD (2008) The Kyoto protocol of IASP basic pain terminology. Pain 137:473–477. https://doi.org/10.1016/j.pain.2008.04.025

    Article  PubMed  Google Scholar 

  • Lozada M, Romano A, Maldonado H (1988) Effects of morphine and naloxone on a defensive response of the crab Chasmagnathus granulatus. Pharmacol Biochem Behav 30:635–640

    Article  CAS  PubMed  Google Scholar 

  • Machin L (1999) Amphibian pain and analgesia. J Zoo Wildl Med 30:2–10

    CAS  PubMed  Google Scholar 

  • Magee B, Elwood RW (2013) Shock avoidance by discrimination learning in the shore crab (Carcinus maenas) is consistent with a key criterion for pain. J Exp Biol 216:353–358

    Article  PubMed  Google Scholar 

  • Magee B, Elwood RW (2016a) Trade-offs between predator avoidance and electric shock avoidance in hermit crabs demonstrate a non-reflexive response to noxious stimuli consistent with prediction of pain. Behav Processes 130:31–35

    Article  PubMed  Google Scholar 

  • Magee BT, Elwood RW (2016b) No discrimination shock avoidance with sequential presentation of stimuli but shore crabs still reduce shock exposure. Biol Open 5:883–888

    Article  PubMed  PubMed Central  Google Scholar 

  • Maldonado H, Miralto A (1982) Effect of morphine and naloxone on a defensive response of the mantis shrimp (Squilla mantis). J Comp Physiol 147:455–459

    Article  CAS  Google Scholar 

  • Mather JA (2011) Philosophical background of attitudes toward and treatment of invertebrates. ILAR J 52:205–212

    Article  CAS  PubMed  Google Scholar 

  • McCambridge C, Dick JTA, Elwood RW (2016) Effects of autotomy compared to manual declawing on contests between males for females in the edible crab, Cancer pagurus: implications for fishery practice and animal welfare. Shellfish Res 35:1037–1044

    Article  Google Scholar 

  • McFarland DJ, Sibly R (1975) The behavioural final common path. Philos Trans R Soc Lond B Biol Sci 270:265–293

    Article  CAS  PubMed  Google Scholar 

  • Molony V (1992) Is animal pain the same as human pain? In: Kuchel TR, Rose M, Burrell J (eds) Animal pain: ethical and scientific perspectives. ACAART, Glen Osmond, SA

    Google Scholar 

  • Patterson L, Dick JTA, Elwood RW (2007) Physiological stress responses in the edible crab Cancer pagurus to the fishery practice of de-clawing. Mar Biol 152:265–272

    Article  Google Scholar 

  • Patterson L, Dick JTA, Elwood RW (2009) Claw loss and feeding ability in the edible crab, Cancer pagurus: implications of fishery practice. Appl Anim Behav Sci 116:302–305

    Article  Google Scholar 

  • Peckmezian T, Taylor PW (2015) Electric shock aversion training of jumping spiders: towards an arachnid model of avoidance learning. Behav Processes 113:99–104

    Article  PubMed  Google Scholar 

  • PETA (2013). https://www.peta.org/issues/animals-used-for-food/factory-farming/fish/lobsters-crabs/. Accessed 23 July 2017

  • Punzo F (1983) Localization of brain function and neurochemical correlates of learning in the mud crab, Eurypanopeus depressus (Decapod). Comp Biochem Physiol A 75:299–305

    Article  Google Scholar 

  • Rose JD, Arlinghaus R, Cooke SJ, Diggles BK, Sawynok W, Steven ED et al (2014) Can fish really feel pain? Fish Fish 15:97–133

    Article  Google Scholar 

  • Rutherford KMD (2002) Assessing pain in animals. Anim Welf 11:31–53

    CAS  Google Scholar 

  • Sherrington C (1906) The integrative action of the nervous system. Oxford University Press, Oxford

    Google Scholar 

  • Sherwin CM (2001) Can invertebrates suffer? Or how robust is argument-by-analogy? Anim Welf 10:S104–S118

    Google Scholar 

  • Shomrat T, Zarrella I, Fiorito G, Hochner B (2008) The octopus vertical lobe modulates short-term learning rate and uses LTP to acquire long-term memory. Curr Biol 18:337–342

    Article  CAS  PubMed  Google Scholar 

  • Sneddon LU (2003) The evidence for pain in fish: the use of morphine as an analgesic. Appl Anim Behav Sci 83:153–162

    Article  Google Scholar 

  • Sneddon LU (2009) Pain perception in fish: indicators and endpoints. ILAR J 50:338–342

    Article  CAS  PubMed  Google Scholar 

  • Sneddon LU, Elwood RW, Adamo SA, Leach MC (2014) Defining and assessing animal pain. Anim Behav 97:202–212

    Article  Google Scholar 

  • Stamp Dawkins M (2012) Why animals matter. Animal consciousness, animal welfare, and human well-being. Oxford University Press, Oxford

    Google Scholar 

  • Stentiford GD, Chang ES, Chang SA, Neil DM (2001) Carbohydrate dynamics and the crustacean hyperglycaemic hormone (CHH): effects of parasitic infection in Norway lobsters (Nephrops norvegicus). Gen Comp Endocrinol 121:13–22

    Article  CAS  PubMed  Google Scholar 

  • Tempel BL, Bovini N, Dawson DR, Quinn WG (1983) Reward learning in normal and mutant Drosophila. Proc Natl Acad Sci U S A 80:1482–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomsic D, Maldonado H (1990) Central effect of morphine pretreatment on short- and long-term habituation to a danger stimulus in the crab Chasmagnathus. Pharmacol Biochem Behav 36:787–793

    Article  CAS  PubMed  Google Scholar 

  • Toullec JY, Vinh J, Le Caer JP, Shillito B, Soyez D (2002) Structure and phylogeny of the crustacean hyperglycemic hormone and its precursor from a hydrothermal vent crustacean: the crab Bythograea thermydron. Peptides 23:31–42

    Article  CAS  PubMed  Google Scholar 

  • Treede RD, Meyer RA, Raja SN, Campbell JN (1992) Peripheral and central mechanisms of cutaneous hyperalgesia. Prog Neurobiol 38:397–421

    Article  CAS  PubMed  Google Scholar 

  • Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A 157:263–277

    Article  CAS  PubMed  Google Scholar 

  • Verri T, Mandal A, Zilli L et al (2001) D-glucose transport in decapod crustacean hepatopancreas. Comp Biochem Physiol 130:585–606

    Article  CAS  Google Scholar 

  • Wall P (1979) On the relation of injury to pain. Pain 6:253–264

    Article  CAS  PubMed  Google Scholar 

  • Walters ET (1987) Site specific sensitization of defensive reflexes in Aplysia: a simple model of hyperalgesia. J Neurosci 7:400–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters ET (2014) Neuroinflammatory contributions to pain after SCI: roles for glial mechanisms and nociceptor-mediated host defense. Exp Neurol 258:48–61

    Article  CAS  PubMed  Google Scholar 

  • Walters ET, Carew TJ, Kandel ER (1981) Associative learning in Aplysia: evidence for conditioned fear in an invertebrate. Science 211:504–506

    Article  CAS  PubMed  Google Scholar 

  • Weary DM, Neil L, Flower FC, Fraser D (2006) Identifying and preventing pain in animals. Appl Anim Behav Sci 100:64–76

    Article  Google Scholar 

  • Webster SG (1996) Measurement of crustacean hyperglycaemic hormone levels in the edible crab Cancer pagurus during emersion stress. J Exp Biol 199:1579–1585

    CAS  PubMed  Google Scholar 

  • Yarali A, Niewalda T, Chen Y-C, Tanimoto H, Duerrnagel ST, Gerber B (2008) ‘Pain relief’ learning in fruit flies. Anim Behav 76:1173–1185

    Article  Google Scholar 

  • Young JZ (1963) The number and sizes of nerve cells in Octopus. J Zool 140:229–254. https://doi.org/10.1111/j.1469-7998.1963.tb01862.x

    Article  Google Scholar 

  • Zimmerman M (1986) Physiological mechanisms of pain and its treatment. Klin Anaesthesiol Intensivether 32:1–19

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Elwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elwood, R.W. (2019). Assessing the Potential for Pain in Crustaceans and Other Invertebrates. In: Carere, C., Mather, J. (eds) The Welfare of Invertebrate Animals. Animal Welfare, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-13947-6_7

Download citation

Publish with us

Policies and ethics