Skip to main content

Potential of Microalgae for Integrated Biomass Production Utilizing CO2 and Food Industry Wastewater

  • Chapter
  • First Online:
Application of Microalgae in Wastewater Treatment

Abstract

The concomitant generation of renewable energy and material resources with distinct environmental applications for CO2 mitigation and wastewater treatment is one of the hallmarks of microalgal research. Microalgae are photoautotrophic microorganisms with simple growth requirements (light, CO2, N, P, and K) that can synthesize commodity biomolecules (lipids, proteins, and carbohydrates) and high-value metabolites in large amount over a short period of time. Requirement of microalgae for C, N, P, and K is usually met by providing technical grade chemicals which ultimately increases the cost of biomass production. However, since microalgae have the potential to utilize CO2 as well as N, P, and K from wastewater, high-density cultivation of microalgae can be accomplished by utilizing wastewater and CO2.

Microalgae biomass produced through CO2 fixation and wastewater treatment can potentially be used for the production of biofuels, pharmaceuticals, and feed grade products. The use of wastewater with co-utilization of CO2 for microalgae cultivation is beneficial since it reduces the requirements of freshwater and essential nutrients (N, P, and K). Wastewater generated from domestic, agricultural, and industrial activities contains a variety of ingredients which can be utilized as a cultivation medium for microalgae. Cultivation of microalgae using wastewater also helps in removal of COD, nitrates, and phosphates aiding its safe disposal and/or utilization. This chapter summarizes the potential of microalgae for integrated biomass production utilizing CO2 and food industry wastewater. The authors focus on the concepts and application of CO2 and wastewater utilization by microalgae. The challenges and future needs for cultivation of microalgae in wastewater are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adenan NS, Yusoff FM, Medipally SR, Shariff M (2016) Enhancement of lipid production in two marine microalgae under different levels of nitrogen and phosphorus deficiency. J Environ Biol 37:669–679

    CAS  Google Scholar 

  • Azadia P, Brownbridgea PEA, Mosbacha S, Inderwildib OR, Kraft M (2014) Production of biorenewable hydrogen and syngas via algae gasification: a sensitivity analysis. Energy Procedia 61:2767–2770

    Article  CAS  Google Scholar 

  • Aziz MA, Ng WJ (1992) Feasibility of wastewater treatment using the activated-algae process. Water Sci Technol 28:71–76

    Article  Google Scholar 

  • Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Physiol Plant Mol Bio 45:369–392

    Article  CAS  Google Scholar 

  • Balannec BM, Vourch M, Rabiller-Baudry, Chaufer B (2005) Comparative study of different nanofiltration and reverse osmosis membranes for dairy effluent treatment by dead-end filtration. Sep Purif Technol 42:195–200

    Article  CAS  Google Scholar 

  • Barsanti L, Gualtieri P (2006) Algae-anatomy, biochemistry and biotechnology, 2nd edn. CRC Press, USA, pp 162–209

    Google Scholar 

  • Becker EW (1988) Micro-algae for human and animal consumption. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 222–256

    Google Scholar 

  • Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge. ISBN 978-0-521-06113

    Google Scholar 

  • Becker EW (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture. Biotechnology and applied phycology. Blackwell Science, Oxford, pp 312–351

    Google Scholar 

  • Beneroso D, Bermudez JM, Arenillas A, Menendez JA (2014) Microwave pyrolysis of microalgae for high syngas production. Bioresour Technol 144:240–246

    Article  CAS  Google Scholar 

  • Bhalamurugan GL, Valerie O, Mark L (2018) Valuable bioproducts obtained from microalgal biomass and their commercial applications: a review. Environ Eng Res 23:229–241

    Article  Google Scholar 

  • Bharathiraja B, Jayamuthunagai J, Sudharsana T, Bharghavia A, Praveenkumar R, Chakravarthy M, Yuvaraj D (2017) Biobutanol – an impending biofuel for future: a review on upstream and downstream processing techniques. Renew Sust Energy Rev 68:788–807

    Article  Google Scholar 

  • Bhuvaneswari K, Devika R (2005) Studies on the physico-chemical and biological characteristics of Coovum river. Asian J Microbiol Biotechnol Environ Sci 41:7449–7451

    Google Scholar 

  • Borowitzka MA (1998) Limits to growth. In: Wong YS, Tam NFY (eds) Wastewater treatment with algae. Springer-Verlag, Berlin, pp 203–226

    Chapter  Google Scholar 

  • Bruneel C, Lemaheiu C, FraeyeI, Ryckebosch E, Muylaert K, Buyse J, Foubert I (2013) Impact of microalgal feed supplementation on omega-3 fatty acid enrichment of hen eggs. J Funct Foods 5:897–904

    Article  CAS  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    Article  CAS  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata XF (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    Article  CAS  Google Scholar 

  • Chanakya HUN, Mahapatra DM, Sarada R, Chauhan VS, Abitha R (2012) Sustainability of large-scale algal biofuel production in India. J Indian Inst Sci 92:63–98

    CAS  Google Scholar 

  • Chaudhary L, Pradhan P, Soni N, Singh P, Tiwari A (2014) Algae as a feedstock for bioethanol production: new entrance in biofuel world. Int J Chem Technol Res 6:1381–1389

    CAS  Google Scholar 

  • Chen YC (2003) Immobilized Isochrysis galbana (Haptophyta) for long-term storage and applications for feed and water quality control in clam (Meretrixlusoria) cultures. J Appl Phycol 15:439–444

    Article  Google Scholar 

  • Cheng HH, Whang LM, Chan KC, Chung MC, Wua SH, Liu CP, Tien SY, Chen SY, Chang JS, Lee WJ (2014) Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresour Technol 184:379–385

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends in Biotechnology 26(3):126–131

    Article  CAS  Google Scholar 

  • Choi HJ (2016) Dairy wastewater treatment using microalgae for potential biodiesel application. Environ Eng Res 21(4):393–400

    Article  CAS  Google Scholar 

  • Christensen L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    Article  CAS  Google Scholar 

  • Crofcheck CL, Xinyi E, Shea AP, Monstross M, Crocker M, Andrews R (2012) Influence of media composition on the growth rate of Chlorella vulgaris and Scenedesmus acutus utilized for CO2 mitigation. J Biochem Technol 4:589–594

    Google Scholar 

  • Day JG, Fleck RA, Benson EE (1998) Cryopreservation of multicellular algae: problems and perspectives. Cryo Letters 19:205–206

    Google Scholar 

  • Demirel B, Yenigun O, Onay TT (2005) Anaerobic treatment of dairy wastewaters: a review. Process Biochem 40:2583–2595

    Article  CAS  Google Scholar 

  • Ding JF, Zhao FM, Cao YF, Xing L, Liu W, Mei S, Li SJ (2014) Cultivation of microalgae in dairy wastewater without sterilization. Int J Phytoremediation 17:222–227

    Article  CAS  Google Scholar 

  • Ding S, Chen M, Gong M, Fan X, Qin B, Xu H, Gao SS, Jin S, Daniel CW, Tsang C, Zhang C (2018) Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms. Sci Total Environ 625:872–884

    Article  CAS  Google Scholar 

  • Ebadi AG, Hisoriev H, Zarnegar M, Ahmadi H (2017) Hydrogen and syngas production by catalytic gasification of algal biomass (Cladophoraglomerata L.) using alkali and alkaline-earth metals compounds (AAEM). Environ Technol:1479–1487

    Google Scholar 

  • El-Sayed WMM, Ibrahim HAH, Abdul-Raouf UM, El-Nagar MM (2016) Evaluation of bioethanol production from Ulva lactuca by Saccharomyces cerevisiae. J Biotechnol Biomater 6:226

    Article  Google Scholar 

  • Evans AM, Smith DL, Moritz JS (2015) Effects of algae incorporation into broiler starter diet formulations on nutrient digestibility and 3 to 21 d bird performance. J Appl Poult Res 24:206–214

    Article  CAS  Google Scholar 

  • Fulke AB, Mudliar SN, Yadav R, Shekh AY, Srinivasan N, Ramanan R, Krishnamurthi K, Devi SS, Chakrabarti T (2010) Bio-mitigation of CO2, calcite formation and simultaneous biodiesel precursors production using Chlorella sp. Bioresour Technol 101:8473–8476

    Article  CAS  Google Scholar 

  • Gatrell S, Lum K, Kim J, Lei XG (2014) Nonruminant nutrition symposium: potential of defatted microalgae from the biofuel industry as an ingredient to replace corn and soybean meal in swine and poultry diets. J Anim Sci 92:1306–1314

    Article  CAS  Google Scholar 

  • Ghayal MS, Pandya MT (2013) Microalgae biomass: a renewable source of energy. Energy Procedia 32:242–250

    Article  CAS  Google Scholar 

  • Goncalves AL, Pires JCM, Simoes M (2017) A review on the use of microalgal consortia for wastewater treatment. Algal Res 24:403–415

    Article  Google Scholar 

  • Gough C (2008) State of the art in carbon dioxide capture and storage in the UK: an experts’ review. Int J Greenhouse Gas Control 2:155–168

    Article  CAS  Google Scholar 

  • Griffiths MJ, Harrison TL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Grobbelaar JU (1982) Potential of algal production. Water SA 8:79–85

    Google Scholar 

  • Grobbelaar JU (2004) Algal nutrition - mineral nutrition. In: Richmond A (ed) Handbook of sMicroalgal culture: biotechnology and applied phycology. Blackwell Science Ltd, Oxford, pp 3–19

    Google Scholar 

  • Guldhe A, Kumari S, Ramanna L, Ramsundar P, Singh P, Rawat I, Bux F (2017) Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. J Environ Manag 203:299–315

    Article  CAS  Google Scholar 

  • Gülyurt MO, Özçimen D, Inan B (2016) Biodiesel production from Chlorella protothecoides oil by microwave-assisted Transesterification. Int J Mol Sci 17:579

    Article  CAS  Google Scholar 

  • Gupta H, Fan LS (2002) Carbonation–calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Ind Eng Chem Res 41:4035–4042

    Article  CAS  Google Scholar 

  • Gupta S, Pandey RA, Pawar SB (2016) Microalgal bioremediation of food-processing industrial wastewater under mixotrophic conditions: kinetics and scaleup approach. Front Chem Sci Eng 10(4):499–508

    Article  CAS  Google Scholar 

  • GuanHua Huang, Feng Chen, Dong Wei, XueWu Zhang, Gu Chen (2010) Biodiesel production by microalgal biotechnology. Applied Energy 87(1):38–46

    Article  CAS  Google Scholar 

  • Harun R, Danquah MK, Forde GM (2009) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203

    Google Scholar 

  • He PJ, Mao B, Shen CM, Shao LM, Lee DJ, Chang JS (2013) Cultivation of Chlorella vulgaris on wastewater containing high levels of ammonia for biodiesel production. Bioresour Technol 129:177–181

    Article  CAS  Google Scholar 

  • Hellebust JA, Ahmad I (1989) Regulation of nitrogen assimilation in green microalgae. Biol Oceanogr 6:241–255

    Google Scholar 

  • Hempel N, Petrick I, Behrendt F (2012) Biomass productivity and productivity of fatty acids and amino acids of microalgae strains as key characteristics of suitability for biodiesel production. J Appl Phycol 24:1407–1418

    Article  CAS  Google Scholar 

  • Hena S, Fatimah S, Tabassum S (2015) Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resour Ind 10:1–14

    Article  Google Scholar 

  • Hernandez D, Riano B, Coca M, Garcia-Gonzalez MC (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945

    Article  CAS  Google Scholar 

  • Ho SH, Shu-Huang W, Chen CY, Hasunuma T, Kondo A, Chang JS (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198

    Article  CAS  Google Scholar 

  • Hodaifa G, Martínez ME, Sánchez S (2009) Daily doses of light in relation to the growth of Scenedesmus obliquus in diluted three-phase olive mill wastewater. J Chem Technol Biotechnol 84:1550–1558

    Article  CAS  Google Scholar 

  • Hosseinia NS, Shang H, Scott JA (2018) Biosequestration of industrial off-gas CO2 for enhanced lipid productivity in open microalgae cultivation systems. Renew Sust Energy Rev 92:458–469

    Article  CAS  Google Scholar 

  • Hu Z, Ma X, Li L (2013) The characteristic and evaluation method of fast pyrolysis of microalgae to produce syngas. Bioresour Technol 140:220–226

    Article  CAS  Google Scholar 

  • Hu Z, Ma X, Li L, Wu J (2014) The catalytic pyrolysis of microalgae to produce syngas. Energy Convers Manag 85:545–550

    Article  CAS  Google Scholar 

  • Hwang J, Kabra A, Ji M, Choi J, El-Dalatony M, Jeon B (2016) Enhancement of continuous fermentative bioethanol production using combined treatment of mixed microalgal biomass. Algal Res 17:14–20

    Article  Google Scholar 

  • IPCC, Intergovernmental Panel on Climate Change (2014) The scientific basis. http://www.ipcc.ch/

  • Jambo SA, Abdulla R, Mohd Azhar SH, Marbawi H, Gansau JA, Ravindra P (2016) A review on third generation bioethanol feedstock. Renew Sust Energ Rev 65:756–769

    Article  CAS  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  CAS  Google Scholar 

  • Johnson MB, Wen Z (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85:525–534

    Article  CAS  Google Scholar 

  • Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413

    Article  CAS  Google Scholar 

  • Kotasthane (2017) Potential of microalgae for sustainable biofuel production. J Marine Sci Res Dev 7:2

    Article  Google Scholar 

  • Kothari R, Prasad R, Kumar V, Singh DP (2013) Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater. Bioresour Technol 144:499–503

    Article  CAS  Google Scholar 

  • Kunjapur AM, Bruce R (2010) Photobioreactor design for commercial biofuel production from Microalgae. Ind Eng Chem Res 49:3516–3526

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690

    Article  CAS  Google Scholar 

  • Lavric L, Cerar A, Fanedl L, Lazar B, Zitnik M, Logar RM (2017) Thermal pretreatment and bioaugmentation improve methane yield of microalgal mix produced in thermophilic anaerobic digestate. Anaerobe 46:162–169

    Article  CAS  Google Scholar 

  • Lee DH (2016) Levelized cost of energy and financial evaluation for biobutanol, algal biodiesel and biohydrogen during commercial development. Int J Hydrog Energy 41:2158–2159

    Google Scholar 

  • Levine RB, Costanza-Robinson MS, Spatafora GA (2011) Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production. Biomass Bioenergy 34:40–49

    Article  CAS  Google Scholar 

  • Liu Z, Campbell V, Heidelberg KB, Caron DA (2016) Gene expression demonstrates different nutritional strategies among three mixotrophicprotists. FEMS Microbiol Ecol 92:fiw106

    Article  CAS  Google Scholar 

  • Maizatul AY, Radin M, Mohamed SR, Adel A, Al-Gheethi MK, Hashim A (2017) An overview of the utilisation of microalgae biomass derived from nutrient recycling of wet market wastewater and slaughter house wastewater. Int Aquat Res 9:177–193

    Article  Google Scholar 

  • Makareviciene V, Skorupskaite V, Andruleviciute V (2013) Biodiesel fuel from microalgae-promising alternative fuel for the future: a review. Rev Environ Sci Biotechnol 12:119–130

    Article  CAS  Google Scholar 

  • Malla FA, Fayaz A, Khan SA, Rashmi, Sharma GK, Gupta N, Abraham G (2015) Phycoremediation potential of Chlorella minutissima on primary and tertiary treated wastewater for nutrient removal and biodiesel production. Ecol Eng 75:343–349

    Article  Google Scholar 

  • Martinez M, Jimenez J, Yousfi FEI (1999) Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliqus. Bioresour Technol 67:233–240

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew sust energy rev 14:217–232

    Article  CAS  Google Scholar 

  • Mobin S, Alam F (2014) Third generation biofuel from algae. Procedia Eng 105:763–768

    Google Scholar 

  • Mulbry W, Kondrad S, Buyer J (2008a) Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. J Appl Phycol 20:1079–1085

    Article  Google Scholar 

  • Mulbry W, Kondrad S, Pizarro C, Elizabeth KW (2008b) Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour Technol 99:8137–8142

    Article  CAS  Google Scholar 

  • National Algal Biofuels Technology Review (2016) U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    Google Scholar 

  • Niess D, Reisser W, Wiessner (1981) The role of endosymbiotic algae in photoaccumulation of green Paramecium bursaria. Planta 152(3):268–271

    Article  CAS  Google Scholar 

  • Oswald WJ (1988) Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University press, Cambridge, pp 305–328

    Google Scholar 

  • Passos F, Astals S, Ferrer I (2013) Anaerobic digestion of microalgal biomass after ultrasound pretreatment. Waste Manag 34:2098–2103

    Article  CAS  Google Scholar 

  • Picardo MC, Medeiros JL, Queiroz FAO, Chaloub RM (2013) Effects of CO2 enrichment and nutrients supply intermittency on batch cultures of Isochrysis galbana. Bioresour Technol 143:242–250

    Article  CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–12

    Article  CAS  Google Scholar 

  • Popp J, Lakner Z, Harangi-Rákos M, Fári M (2014) The effect of bioenergy expansion: food, energy, and environment. Renew Sust Energ Rev 32:559–578

    Article  Google Scholar 

  • Qin L, Shu Q, Wang Z, Shang C, Zhu S, Xu J, Li R, Zhu R, Yuan Z (2013) Cultivation of Chlorella vulgaris in dairy wastewater pretreated by UV irradiation and sodium hypochlorite. Appl Biochem Biotechnol 172:1121–1130

    Article  CAS  Google Scholar 

  • Raheem A, Azlina W, Taufiq Y, Michael KD, Razif H (2015) Optimization of the microalgae Chlorella vulgaris for syngas production using central composite design. RSC Adv 88:71805–71815

    Article  CAS  Google Scholar 

  • Raheem A, Dupont V, Channa AK, Zhao X, Vuppaladadiyam AK, Yun-Hin, Taufiq-Yap, Zhao M, Harun R (2017) Parametric characterisation of air gasification of Chlorella vulgaris biomass. Energy Fuel 31:2959–2969

    Article  CAS  Google Scholar 

  • Ramjeawon, Cleaner T (2000) Production in Mauritian cane-sugar factories. J Clean Prod 8:503–510

    Article  Google Scholar 

  • Reyimu Z, OzcImen D (2017) Batch cultivation of marine microalgae Nannochloropsis oculata and Tetraselmis suecica in treated municipal wastewater toward bioethanol production. J Clean Prod 150:40–46

    Article  CAS  Google Scholar 

  • Rhee G-Y (1978) Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition and nitrate uptake. Limnol Oceanogr 23:1

    Article  Google Scholar 

  • Rizza LS, Smachetti MES, Nascimento MD, Salerno GL, Curatti L (2017) Bioprospecting for native microalgae as an alternative source of sugars for the production of bioethanol. Algal Res 22:140–147

    Article  Google Scholar 

  • Rubio CF, Fernandez FG, Perez JA, Camacho FG, Grima EM (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62:71–86

    Article  CAS  Google Scholar 

  • Richmond A (2013) Biological principles of mass cultivation of photoautotrophic microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. John Wiley & Sons, Chichester, pp 171–204

    Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program — biodiesel from algae. National Renewable Energy Laboratory, Golden, CO. Report NREL/TP-580-2419

    Google Scholar 

  • Shekh AY, Shrivastava P, Krishnamurthi K, Mudliar SN, Devi SS, Kanade GS, Lokhande K, Chakrabati T (2013a) Stress-induced lipids are unsuitable as a direct biodiesel feedstock: a case study with Chlorella pyrenoidosa. Bioresour Technol 138:382–386

    Article  CAS  Google Scholar 

  • Shekh AY, Krishnamurthi K, Yadav RR et al (2013b) Algae-mediated carbon dioxide sequestration for climate change mitigation and conversion to value- added products. In: Faizal B (ed) Biotechnological application of microalgae: biodiesel and value added products. CRC press, New York, pp 161–178

    Chapter  Google Scholar 

  • Shekh AY, Shrivastava P, Krishnamurthi K, Mudliar SN, Devi SS, Kanade GS, Chakrabati T (2016a) Stress enhances poly-unsaturation rich lipid accumulation in Chlorella sp. and Chlamydomonas sp. Biomass Bioenergy 84:59–66

    Article  CAS  Google Scholar 

  • Shekh AY, Shrivastava P, Gupta A, Krishnamurthi K, Devi SS, Mudliar SN (2016b) Biomass and lipid enhancement in Chlorella sp. with emphasis on biodiesel quality assessment through detailed FAME signature. Bioresour Technol 201:276–286

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications ofmicroalgae. J Biosci Bioeng 101(2):87–96

    Article  CAS  Google Scholar 

  • Stephenson AL, Dennis JS, Christopher JH, Stuart AS, Alison GS (2010) Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 1:47–58

    Article  CAS  Google Scholar 

  • Sugiharto S, Lauridsen C (2016) Dietary Chlorella supplementation effect on immune responses and growth performances of broiler chickens exposed to post hatch holding time. Livest Res Rural Dev 28:119

    Google Scholar 

  • Sydney EB, Novak AC, Carvalho JC, Soccol CR (2014) Respirometric balance and carbon fixation of industrially important algae. In: Pandey A, Lee DJ, Chisti Y, Soccol CR (eds) Biofuels from algae. Elsevier, Burlington, pp 67–84

    Chapter  Google Scholar 

  • Tian C, Li B, Liu Z, Lu H (2014) Chem inform abstract: hydrothermal liquefaction for algal biorefinery: a critical review. Renew Sust Energ Rev 38:933–950

    Article  CAS  Google Scholar 

  • Uchiyama H, Aoyagi H, Ugwu CU (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  CAS  Google Scholar 

  • Wahal S, Viamajala S (2016) Uptake of inorganic and organic nutrient species during cultivation of a Chlorella isolate in anaerobically digested dairy waste. Biotechnol Prog 32:1336–1342

    Article  CAS  Google Scholar 

  • Wang Y, Guoa WQ, Lob YC, Chang JS, Rena NQ (2014) Characterization and kinetics of bio-butanol production with Clostridium acetobutylicum ATCC824 using mixed sugar medium simulating microalgae-based carbohydrates. Biochem Eng J 91:220–230

    Article  CAS  Google Scholar 

  • Wang Y, Ho SH, Cheng CL, Nagarajan D, Guo WQ, Lin C, Li S, Ren N, Chang JS (2017) Nutrients and COD removal of swine wastewater with an isolated microalgal strain Neochloris aquatica CL-M1 accumulating high carbohydrate content used for biobutanol production. Bioresour Technol 242:7–14

    Article  CAS  Google Scholar 

  • Weidong L, Wang Z, Wang X, Yuan Z (2015) Cultivation of Chlorella sp. using raw diary wastewater for nutrient removal and biodiesel production: characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Bioresour Technol 192:382–388

    Article  CAS  Google Scholar 

  • Weissman JC, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng 31:336–344

    Article  CAS  Google Scholar 

  • Yadavalli R, Rao CS, Rao RS, Potumarthi R (2014) Dairy effluent treatment and lipids production by Chlorella pyrenoidosa and Euglena gracilis: study on open and closed systems. Asia Pac J Chem Eng 9:368–373

    Article  CAS  Google Scholar 

  • Yellapua SK, Bharati, Kaur R, Kumar RL, Tiwari B, Zhang X, Tyagi RD (2018) Recent developments of downstream processing for microbial lipids and conversion to biodiesel. Bioresour Technol 256:515–528

    Article  CAS  Google Scholar 

  • Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101:71–74

    Article  CAS  Google Scholar 

  • Zhou W, Chen P, Min M, Ma X, Wang J, Griffith R, Hussain F, Peng P, Xie Q, Li Y, Shi J, Meng J, Ruan R (2014) Environment-enhancing algal biofuel production using wastewaters. Renew Sust Energ Rev 36:256–269

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehar, J., Shekh, A., Uthaiah Malchira, N., Mudliar, S. (2019). Potential of Microalgae for Integrated Biomass Production Utilizing CO2 and Food Industry Wastewater. In: Gupta, S., Bux, F. (eds) Application of Microalgae in Wastewater Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-13909-4_3

Download citation

Publish with us

Policies and ethics