Skip to main content

Assessment of the Variability of the Landfill Gas Composition Captured on a Used Landfill

  • Conference paper
  • First Online:
Renewable Energy Sources: Engineering, Technology, Innovation

Part of the book series: Springer Proceedings in Energy ((SPE))

  • 1106 Accesses

Abstract

An assessment of the variability of the landfill gas components captured on a used waste landfill site since the 1970s, was presented in the article. The amount of waste deposited in the landfill site has decreased more than 2-times during the period of 6 years, excluding organic waste affecting the productivity of landfill gas. Despite of the variability amount of waste deposited, the composition of landfill gas stood out average concentrations of CH4 and CO2, which exceeded 50% and 30%, respectively. This confirmed that the landfill site was still in the methanogenesis phase. The anaerobic processes were taking place in the deposit to a large extent, which was demonstrated by the low average oxygen content of 1.185%, while the highest variability was confirmed by the result of the standard deviation H2S (35.106 ± 69.915 ppm). In June, the highest values of emissions, CH4, CO2 while the general decrease in values did not relate to emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Adeoti, T.D. Adegboyega, T.A. Ayelegun, An assessment of Nigeria biogas potential from agricultural wastes. Energy Sources Part 23(1), 63–68 (2001)

    Article  Google Scholar 

  2. A.H. Igoni, C.L. Eze, M.J. Ayotamuno, S.O.T. Ogaji, S.D. Probert, Designs of anaerobic digesters for producing biogas from municipal solid-waste. Appl. Energy 85(6), 430–438 (2008)

    Article  Google Scholar 

  3. W.N. Schirmer, J.F.T. Jucá, A.R.P. Schuler, S. Holanda, L.L. Jesus, Methane production in anaerobic digestion of organic waste from Recife (Brazil) landfill: evaluation in refuse of different ages. Braz. J. Chem. Eng. 31(2), 373–384 (2014)

    Article  Google Scholar 

  4. K. Starra, X.G. Duranyb, G.V. Mendezb, L.T. Peiroc, L. Lombardi, Biogas upgrading: global warming potential of conventional and innovative technologies in Proceedings of ECOS 2012—The 25th International Conference on Efficiency Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Perugia, Italy, 26–29 June 2012 (2012), pp. 1–12

    Google Scholar 

  5. T. Getahun, M. Gebrehiwot, A. Ambelu, T. Van Gerven, B. Van der Bruggen, The potential of biogas production from municipal solid waste in a tropical climate. Environ. Monit. Assess. 186(7), 4637–4646 (2014)

    Google Scholar 

  6. A.H. Igoni, Analyses of anaerobic batch digestion of municipal solid waste in the production of biogas using mathematical models. Energy Environment Res. 6(1), 44–56 (2016)

    Article  Google Scholar 

  7. E.C. Rada, M. Ragazzi, P. Stefani, M. Schiavon, W. Torretta, Modelling the potential biogas productivity range from a MSW landfill for its sustainable exploitation. Sustainability 7, 482–495 (2015)

    Article  Google Scholar 

  8. European Commission, Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste

    Google Scholar 

  9. N. Paepatung, A. Nopharatana, W. Songkasiri, Biomethane potential of biological solid materials and agricultural wastes. Asian J. Energy Environ. 10(1), 19–27 (2009)

    Google Scholar 

  10. Ch. Meidiana, A. Rafsanjani, The spatial-economic approach for determining biogas management in rural area. Int. J. Appl. Eng. Res. 10(95), 31–35 (2015)

    Google Scholar 

  11. A.H. Hassan, M.H. Ramadan, Assessment of sanitary landfill leachate characterizations and its impacts on groundwater at Alexandria. J. Egypt. Publ. Health Assoc. 80(1–2), 27–49 (2005)

    Google Scholar 

  12. M.A. Barlaz, R.K. Ham, D.M. Schaefer, Mass-balance analysis of anaerobically decomposed refuse. J. Environ. Eng. (ASCE) 115(6), 1088–1102 (1989)

    Article  Google Scholar 

  13. I.R.F.S. Alves, Análise experimental do potencial de geração de biogás em resíduos sólidos urbanos. Dissertation (Federal University of Pernambuco, 2008). (in Portuguese). http://www.scielo.br/. Accessed 25 May 2018

  14. H. Cheng, Y. Hu, Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China. Biores. Technol. 101(11), 3816–3824 (2010)

    Article  Google Scholar 

  15. IPCC, Climate Change, The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (Cambridge University Press, New York City, 2007)

    Google Scholar 

  16. J. Ciuła, K. Gaska, A. Generowicz, G. Hajduga, Energy from landfill gas as an example of circular economy in E3S Web of Conferences, vol. 30 (2018), p. 03002

    Article  Google Scholar 

  17. G. Przydatek, Analysis of transformations occurring in the active landfill area. Infrastructure and Ecology of Rural Areas No. 3/IV/2012. Polish Academy of Sciences, Department in Krakow, Technical Committee for Rural Infrastructure (2012), pp. 109–118. (in Polish)

    Google Scholar 

  18. M. Zamorano, J. Pérez Pérez, A.I. Pavés, R.Á. Rida, Study of the energy potential of the biogas produced by an urban waste landfill in Southern Spain. Renew. Sustain. Energy Rev. 11(5), 909–922 (2007)

    Article  Google Scholar 

  19. M. Persson, O. Jönsson, A. Wellinger: Task 37 biogas upgrading to vehicle fuel standards and grid injection (2006), pp. 1–31

    Google Scholar 

  20. O. El Asri, M. Mahaouch, M.E. Afilal, The evaluation and the development of three devices for measurement of biogas production. Phys. Chem. News 75, 75–85 (2015)

    Google Scholar 

  21. K.-H. Kim, Emissions of reduced sulfur compounds (RSC) as a landfill gas (LFG): a comparative study of young and old landfill facilities. Atmos. Environ. 40(34), 6567–6578 (2006)

    Article  Google Scholar 

  22. R. Del Valle-Zermeño, M.S. Romero-Güiza, J.M. Chimenos, J. Formosa, J. Mata Alvarez, S. Astals, Biogas upgrading using MSWI bottom ash: an integrated municipal solid waste management. Renew. Energy 80, 184–189 (2015)

    Article  Google Scholar 

  23. N.N. Zulkefli, M.S. Masdar, W.R.W. Isahak, J. Jahim, E.H. Majlan, S.A.M. Rejab, C.C. Lye, Mathematical modelling and simulation on the adsorption of Hydrogen Sulfide (H2S) gas. in IOP Conference Series: Materials Science and Engineering, vol. 206, no. 012069 (2017), pp. 1–13

    Article  Google Scholar 

  24. Y. Yu, W. Zhang, Greenhouse gas emissions from solid waste in Beijing: the rising trend and the mitigation effects by management improvements. Waste Manag. Res. 34(4), 368–377 (2016)

    Article  MathSciNet  Google Scholar 

  25. U. Desideri, M.F. Di, D. Leonardi, S. Proietti, Sanitary landfill energetic potential analysis: a real case study. Energy Convers. Study 44, 1969–1981 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors of the study would like to thank of the University authorities for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Przydatek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Przydatek, G., Ciągło, K. (2020). Assessment of the Variability of the Landfill Gas Composition Captured on a Used Landfill. In: Wróbel, M., Jewiarz, M., Szlęk , A. (eds) Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-13888-2_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13888-2_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13887-5

  • Online ISBN: 978-3-030-13888-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics