Skip to main content

The Evolution of CNO Isotope Ratios: A Litmus Test for Stellar IMF Variations in Galaxies Across Cosmic Time

  • Conference paper
  • First Online:
Nuclei in the Cosmos XV

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 219))

  • 800 Accesses

Abstract

Determining the shape of the stellar initial mass function (IMF) and whether it is constant or varies in space and time is the Holy Grail of modern astrophysics, with profound implications for all theories of star and galaxy formation. On a theoretical ground, the extreme conditions for star formation (SF) encountered in the most powerful starbursts in the Universe are expected to favour the formation of massive stars. Direct methods of IMF determination, however, cannot probe such systems, because of the severe dust obscuration affecting their starlight. The next best option is to observe CNO bearing molecules in the interstellar medium at millimetre/submillimetre wavelengths, which, in principle, provides the best indirect evidence for IMF variations. In this contribution, we present our recent findings on this issue. First, we reassess the roles of different types of stars in the production of CNO isotopes. Then, we calibrate a proprietary chemical evolution code using Milky Way data from the literature, and extend it to discuss extragalactic data. We show that, though significant uncertainties still hamper our knowledge of the evolution of CNO isotopes in galaxies, compelling evidence for an IMF skewed towards high-mass stars can be found for galaxy-wide starbursts. In particular, we analyse a sample of submillimetre galaxies observed by us with the Atacama Large Millimetre Array at the peak of the SF activity of the Universe, for which we measure \(^{13}\)C/\(^{18}\)\(\simeq \) 1. This isotope ratio is especially sensitive to IMF variations, and is little affected by observational uncertainties. At the end, ongoing and future developments of our work are briefly outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The net yield of a given element is defined as the matter restored to the ISM in the form of the newly created element, normalized to the total mass locked up into low mass stars and stellar remnants, per stellar generation [2].

References

  1. E.E. Salpeter, Astrophys. J. 121, 161 (1955)

    Article  ADS  Google Scholar 

  2. A. Maeder, Astron. Astrophys. 264, 105 (1992)

    ADS  Google Scholar 

  3. F. Matteucci, Chemical Evolution of Galaxies (Springer-Verlag, Berlin, 2012)

    Book  Google Scholar 

  4. N. Bastian, K.R. Covey, M.R. Meyer, Ann. Rev. Astron. Astrophy. 48, 339 (2010)

    Article  ADS  Google Scholar 

  5. M. Geha et al., Astrophys. J. 771, 29 (2013)

    Article  ADS  Google Scholar 

  6. F.R.N. Schneider et al., Science 359, 69 (2018)

    Article  ADS  Google Scholar 

  7. M. Cappellari et al., Nature 484, 485 (2012)

    Article  ADS  Google Scholar 

  8. M. Sarzi et al., Mon. Not. R. Astron. Soc. 478, 4084 (2018)

    Article  ADS  Google Scholar 

  9. R.J. Ivison et al., Mon. Not. R. Astron. Soc. 298, 583 (1998)

    Article  ADS  Google Scholar 

  10. J.M. Simpson et al., Astrophys. J. 844, L10 (2017)

    Article  ADS  Google Scholar 

  11. P.P. Papadopoulos, Astrophys. J. 720, 226 (2010)

    Article  ADS  Google Scholar 

  12. Z. Yan, T. Jerabkova, P. Kroupa, Astron. Astrophys. 607, A126 (2017)

    Article  ADS  Google Scholar 

  13. C. Henkel, R. Mauersberger, Astron. Astrophys. 274, 730 (1993)

    ADS  Google Scholar 

  14. P.P. Papadopoulos et al., Astrophys. J. 788, 153 (2014)

    Article  ADS  Google Scholar 

  15. D. Romano et al., Mon. Not. R. Astron. Soc. 470, 401 (2017)

    Article  ADS  Google Scholar 

  16. Z.-Y. Zhang, D. Romano et al., Nature 558, 260 (2018)

    Article  ADS  Google Scholar 

  17. G. Meynet, A. Maeder, Astron. Astrophys. 390, 561 (2002)

    Article  ADS  Google Scholar 

  18. A.I. Karakas, Mon. Not. R. Astron. Soc. 403, 1413 (2010)

    Article  ADS  Google Scholar 

  19. K. Nomoto, C. Kobayashi, N. Tominaga, Ann. Rev. Astron. Astrophys. 51, 457 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Romano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Romano, D., Zhang, ZY., Matteucci, F., Ivison, R.J., Papadopoulos, P.P. (2019). The Evolution of CNO Isotope Ratios: A Litmus Test for Stellar IMF Variations in Galaxies Across Cosmic Time. In: Formicola, A., Junker, M., Gialanella, L., Imbriani, G. (eds) Nuclei in the Cosmos XV. Springer Proceedings in Physics, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-030-13876-9_34

Download citation

Publish with us

Policies and ethics