Skip to main content

Functional Morphology of Vertebrate Feeding Systems: New Insights from XROMM and Fluoromicrometry

  • Chapter
  • First Online:
Feeding in Vertebrates

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Investigations in the form–function relationships of vertebrate feeding systems have a long and illustrious history of inferring function from anatomical structure and specimen manipulation, and a shorter but highly successful history of measuring function directly in living animals with sophisticated methods such as electromyography, bone strain gauges, high-speed cinematography, and cineradiography. Two new methods, X-ray Reconstruction of Moving Morphology (XROMM) and fluoromicrometry show great promise for revealing the 3D form–function relationships of cranial and cervical musculoskeletal structures. XROMM has been applied to measure 3D jaw kinematics and tooth occlusion in mammalian mastication and 3D pharyngeal jaw mechanics in fishes. The form–function relationships of the temporomandibular and other cranial joints are being explored with XROMM, including cranial kinesis in squamates, birds, and fishes. Muscle strain can be measured with fluoromicrometry by implanting small radio-opaque beads and tracking them with biplanar fluoroscopy. Fluoromicrometry has been used to measure muscle strain in muscles with complex architectures, such as the axial muscles during suction feeding in fishes and tongue deformation during swallowing in mammals. XROMM, fluoromicrometry, and buccal pressure measurements together have been used to measure the instantaneous power required for suction feeding and relate required power to the available muscle power. In the future, some systems that may benefit greatly from XROMM and fluoromicrometry are tooth–food interactions during mastication, food transport and swallowing, and the form–function relationships of feeding muscles with complex muscle-tendon architecture, such as the mammalian muscles of mastication and the multi-part adductor mandibulae of fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson RA, McBrayer LD, Herrel A (2008) Bite force in vertebrates: opportunities and caveats for use of a nonpareil whole-animal performance measure. Biol J Linn Soc 93:709–720

    Article  Google Scholar 

  • Anker GC (1974) Morphology and kinetics of the head of the stickleback, Gasterosteus aculeatus. Trans Zool Soc Lond 32:311–416

    Article  Google Scholar 

  • Ardran G, Kemp F, Ride W (1958) A radiographic analysis of mastication and swallowing in the domestic rabbit: Oryctolagus cuniculus (L). J Zool 130:257–274

    Google Scholar 

  • Astley HC, Roberts TJ (2012) Evidence for a vertebrate catapult: elastic energy storage in the plantaris tendon during frog jumping. Biol Lett 8:386–389. https://doi.org/10.1098/rsbl.2011.0982

    Article  PubMed  Google Scholar 

  • Azizi E, Roberts TJ (2009) Biaxial strain and variable stiffness in aponeuroses. J Physiol 587:4309–4318

    Article  CAS  Google Scholar 

  • Azizi E, Brainerd EL, Roberts TJ (2008) Variable gearing in pennate muscles. Proc Natl Acad Sci USA 105:1745–1750

    Article  CAS  Google Scholar 

  • Bhullar B-AS, Manafzadeh AR, Miyamae JA, Hoffman EA, Brainerd EL, Musinsky C, Crompton AW (2019) Rolling of the jaw is essential for mammalian chewing and tribosphenic molar function. Nat 566(7745):528–532

    Article  CAS  Google Scholar 

  • Becht G (1953) Comparative biologic-anatomical researches on mastication in some mammals I and II. Koninkl Neder Akad van Wet Proc 56:508–527

    Google Scholar 

  • Bemis WE, Lauder GV (1986) Morphology and function of the feeding apparatus of the lungfish, Lepidosiren paradoxa (Dipnoi). J Morphol 187:81–108

    Article  CAS  Google Scholar 

  • Berquist RM et al (2012) The digital fish library: using MRI to digitize, database, and document the morphological diversity of fish. PloS ONE 7(4):e34499. https://doi.org/10.1371/journal.pone.0034499

    Article  CAS  Google Scholar 

  • Biewener AA (2016) Locomotion as an emergent property of muscle contractile dynamics. J Exp Biol 219:285–294. https://doi.org/10.1242/jeb.123935

    Article  Google Scholar 

  • Brainerd EL, Azizi E (2005) Muscle fiber angle, segment bulging and architectural gear ratio in segmented musculature. J Exp Biol 208:3249–3261

    Article  Google Scholar 

  • Brainerd EL, Baier DB, Gatesy SM, Hedrick TL, Metzger KA, Gilbert SL, Crisco J (2010) X-ray reconstruction of moving morphology (XROMM): precision, accuracy and applications in comparative biomechanics research. J Exp Zool A 313A:262–279

    Google Scholar 

  • Brainerd EL, Blob RW, Hedrick TL, Creamer AT, Müller UK (2017) Data management rubric for video data in organismal biology. Integr Comp Biol 57:33–47

    Article  Google Scholar 

  • Camp AL, Brainerd EL (2014) Role of axial muscles in powering mouth expansion during suction feeding in largemouth bass (Micropterus salmoides). J Exp Biol 217:1333–1345. https://doi.org/10.1242/jeb.095810

    Article  PubMed  Google Scholar 

  • Camp AL, Brainerd EL (2015) Reevaluating musculoskeletal linkages in suction-feeding fishes with X-ray reconstruction of moving morphology (XROMM). Integr Comp Biol 55:36–47. https://doi.org/10.1093/icb/icv034

    Article  PubMed  Google Scholar 

  • Camp AL, Roberts TJ, Brainerd EL (2015) Swimming muscles power suction feeding in largemouth bass. Proc Natl Acad Sci USA 112:8690–8695. https://doi.org/10.1073/pnas.1508055112

    Article  CAS  PubMed  Google Scholar 

  • Camp AL, Astley HC, Horner AM, Roberts TJ, Brainerd EL (2016) Fluoromicrometry: a method for measuring muscle length dynamics with biplanar videofluoroscopy. J Exp Zool A 325A:399–408. https://doi.org/10.1002/jez.2031

    Article  CAS  Google Scholar 

  • Camp AL, Scott B, Brainerd EL, Wilga CD (2017) Dual function of the pectoral girdle for feeding and locomotion in white-spotted bamboo sharks. Proc Biol Sci 284. https://doi.org/10.1098/rspb.2017.0847

    Article  Google Scholar 

  • Camp AL, Roberts TJ, Brainerd EL (2018) Bluegill sunfish use high power outputs from axial muscles to generate powerful suction-feeding strikes. J Exp Biol 221:jeb178160. https://doi.org/10.1242/jeb.178160

    Article  Google Scholar 

  • Carroll AM (2004) Muscle activation and strain during suction feeding in the largemouth bass Micropterus salmoides. J Exp Biol 207:983–991. https://doi.org/10.1242/jeb.00862

    Article  PubMed  Google Scholar 

  • Carroll AM, Wainwright PC (2006) Muscle function and power output during suction feeding in largemouth bass, Micropterus salmoides. Comp Biochem Physiol A Mol Integr Physiol 143:389–399. https://doi.org/10.1016/j.cbpa.2005.12.022

    Article  CAS  PubMed  Google Scholar 

  • Conroy GC, Vannier MW (1984) Noninvasive three-dimensional computer imaging of matrix-filled fossil skulls by high-resolution computed tomography. Science 226:456–458

    Article  CAS  Google Scholar 

  • Cranford TW (1988) The anatomy of acoustic structures in the spinner dolphin forehead as shown by X-ray computed tomography and computer graphics. In: Nachtigall PE, Moore PWB (eds) Animal sonar. NATO ASI Science (Series A: Life Sciences), vol 156. Springer, Boston, pp 67–77

    Chapter  Google Scholar 

  • Davies TG et al (2017) Open data and digital morphology. Proc Biol Sci 284. https://doi.org/10.1098/rspb.2017.0194

    Article  Google Scholar 

  • Davis JS (2014) Functional morphology of mastication in musteloid carnivorans. PhD dissertation, Ohio University

    Google Scholar 

  • Dawson MM, Metzger KA, Baier DB, Brainerd EL (2011) Kinematics of the quadrate bone during feeding in Mallard ducks. J Exp Biol 214:2036–2046

    Article  Google Scholar 

  • Drost MR, Vandenboogaart JGM (1986) A simple method for measuring the changing volume of small biological objects, illustrated by studies of suction feeding by fish larvae and of shrinkage due to histological fixation. J Zool 209:239–249

    Article  Google Scholar 

  • Gans C, Vree Fd, Gorniak GC (1978) Analysis of mammalian masticatory mechanisms: progress and problems. Anat Histol Embryol 7:226–244

    Article  CAS  Google Scholar 

  • Gatesy SM, Baier DB, Jenkins FA, Dial KP (2010) Scientific rotoscoping: a morphology-based method of 3-D motion analysis and visualization. J Exp Zool 313A:244–261

    Google Scholar 

  • Gibb AC, Ferry-Graham L (2005) Cranial movements during suction feeding in teleost fishes: are they modified to enhance suction production? Zoology (Jena) 108:141–153. https://doi.org/10.1016/j.zool.2005.03.004

    Article  Google Scholar 

  • Gidmark NJ, Staab KL, Brainerd EL, Hernandez LP (2012) Flexibility in starting posture drives flexibility in kinematic behavior of the kinethmoid-mediated premaxillary protrusion mechanism in a cyprinid fish, Cyprinus carpio. J Exp Biol 215:2262–2272

    Article  Google Scholar 

  • Gidmark NJ, Konow N, LoPresti E, Brainerd EL (2013) Bite force is limited by the force–length relationship of skeletal muscle in black carp, Mylopharyngodon piceus. Biol Lett 9:20121181

    Article  Google Scholar 

  • Gidmark NJ, Tarrant JC, Brainerd EL (2014) Convergence in morphology and masticatory function between the pharyngeal jaws of grass carp, Ctenopharyngodon idella, and oral jaws of amniote herbivores. J Exp Biol 217:1925–1932

    Article  Google Scholar 

  • Gignac PM, Kley NJ (2014) Iodine-enhanced micro-CT imaging: methodological refinements for the study of the soft-tissue anatomy of post-embryonic vertebrates. J Exp Zool B 322:166–176

    Article  Google Scholar 

  • Gignac PM et al (2016) Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues. J Anat 228:889–909

    Article  CAS  Google Scholar 

  • Gold MEL, Schulz D, Budassi M, Gignac PM, Vaska P, Norell MA (2016) Flying starlings, PET and the evolution of volant dinosaurs. Curr Biol 26:R265–R267

    Article  Google Scholar 

  • Grobecker DB, Pietsch TW (1979) High-speed cinematographic evidence for ultrafast feeding in antennariid anglerfishes. Science 205:1161

    Article  CAS  Google Scholar 

  • Gröning F, Jones ME, Curtis N, Herrel A, O’Higgins P, Evans SE, Fagan MJ (2013) The importance of accurate muscle modelling for biomechanical analyses: a case study with a lizard skull. J Roy Soc Interface 10:20130216

    Article  Google Scholar 

  • Grosse IR, Dumont ER, Coletta C, Tolleson A (2007) Techniques for modeling muscle-induced forces in finite element models of skeletal structures. Anat Rec (Hoboken) 290:1069–1088. https://doi.org/10.1002/ar.20568

    Article  Google Scholar 

  • Grossnickle DM (2017) The evolutionary origin of jaw yaw in mammals. Sci Rep 7:45094

    Article  CAS  Google Scholar 

  • Herrel A, De Grauw E, Lemos-Espinal JA (2001) Head shape and bite performance in xenosaurid lizards. J Exp Zool A 290:101–107

    Article  CAS  Google Scholar 

  • Higham TE, Day SW, Wainwright PC (2006) Multidimensional analysis of suction feeding performance in fishes: fluid speed, acceleration, strike accuracy and the ingested volume of water. J Exp Biol 209:2713–2725. https://doi.org/10.1242/jeb.02315

    Article  PubMed  Google Scholar 

  • Hylander WL (1977) In vivo bone strain in the mandible of Galago crassicaudatus. Am J Phys Anthropol 46:309–326

    Article  CAS  Google Scholar 

  • Iriarte-Diaz J, Terhune CE, Taylor AB, Ross CF (2017) Functional correlates of the position of the axis of rotation of the mandible during chewing in non-human primates. Zoology 124:106–118

    Article  Google Scholar 

  • Jeffery NS, Stephenson RS, Gallagher JA, Jarvis JC, Cox PG (2011) Micro-computed tomography with iodine staining resolves the arrangement of muscle fibres. J Biomech 44:189–192

    Article  Google Scholar 

  • Knörlein BJ, Baier DB, Gatesy SM, Laurence-Chasen JD, Brainerd EL (2016) Validation of XMALab software for marker-based XROMM. J Exp Biol 219:3701–3711. https://doi.org/10.1242/jeb.145383

    Article  PubMed  Google Scholar 

  • Konow N, Thexton A, Crompton A, German RZ (2010) Regional differences in length change and electromyographic heterogeneity in sternohyoid muscle during infant mammalian swallowing. J App Physiol 109:439–448

    Article  Google Scholar 

  • Konow N, Cheney JA, Roberts TJ, Waldman JR, Swartz SM (2015) Spring or string: does tendon elastic action influence wing muscle mechanics in bat flight? Proc Biol Sci 282:20151832. https://doi.org/10.1098/rspb.2015.1832

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauder GV (1980) Evolution of the feeding mechanism in primitive actinopterygian fishes: a functional anatomical analysis of Polypterus, Lepisosteus, and Amia. J Morphol 163:283–317

    Article  Google Scholar 

  • Lauder GV, Madden PG (2008) Advances in comparative physiology from high-speed imaging of animal and fluid motion. Annu Rev Physiol 70:143–163

    Article  CAS  Google Scholar 

  • Liem KF (1967) Functional morphology of the head of the anabantoid teleost fish, Helostoma temmincki. J Morphol 121:135–157

    Article  CAS  Google Scholar 

  • Liem KF (1980) Acquisition of energy by teleosts: adaptive mechanisms and evolutionary patterns. In: Ali MA (ed) Environmental physiology of fishes. NATO advanced study institutes series (Series A: Life science), vol 35. Springer, Boston, pp 299–334

    Chapter  Google Scholar 

  • MacCannell A, Sinclair K, Friesen-Waldner L, McKenzie CA, Staples JF (2017) Water–fat MRI in a hibernator reveals seasonal growth of white and brown adipose tissue without cold exposure. J Comp Physiol B 187:759–767

    Article  CAS  Google Scholar 

  • Menegaz RA, Baier DB, Metzger KA, Herring SW, Brainerd EL (2015) XROMM analysis of tooth occlusion and temporomandibular joint kinematics during feeding in juvenile miniature pigs. J Exp Biol 218:2573–2584. https://doi.org/10.1242/jeb.119438

    Article  PubMed  Google Scholar 

  • Metscher BD (2009) MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol 9:11

    Article  Google Scholar 

  • Montie EW, Schneider GE, Ketten DR, Marino L, Touhey KE, Hahn ME (2007) Neuroanatomy of the subadult and fetal brain of the Atlantic White-sided Dolphin (Lagenorhynchus acutus) from in situ magnetic resonance images. Anat Rec 290:1459–1479

    Article  Google Scholar 

  • Montuelle SJ, Williams SH (2015) In vivo measurement of mesokinesis in Gekko gecko: the role of cranial kinesis during gape display, feeding and biting. PLoS ONE 10:e0134710. https://doi.org/10.1371/journal.pone.0134710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyers RE (1950) An electromyographic analysis of certain muscles involved in temporomandibular movement. Amer J Orthod 36:481–515

    Article  CAS  Google Scholar 

  • Muller M, Osse J (1984) Hydrodynamics of suction feeding in fish. Trans Zool Soc Lond 37:51–135

    Article  Google Scholar 

  • Muller M, Osse J, Verhagen J (1982) A quantitative hydrodynamical model of suction feeding in fish. J Theor Biol 95:49–79

    Article  Google Scholar 

  • Olsen AM, Westneat MW (2016) Linkage mechanisms in the vertebrate skull: structure and function of three-dimensional, parallel transmission systems. J Morphol 277:1570–1583

    Article  Google Scholar 

  • Olsen AM, Camp AL, Brainerd EL (2017a) The opercular mouth-opening mechanism of largemouth bass functions as a 3D four-bar linkage with three degrees of freedom. J Exp Biol 220:4612–4623

    Article  Google Scholar 

  • Olsen AM, Hernandez LP, Camp AL, Brainerd EL (2017b) Linking morphology and motion: testing multibody simulations against in vivo cranial kinematics in suction feeding fishes using XROMM. FASEB J 31:90.91–90.91

    Google Scholar 

  • Orsbon CP, Gidmark NJ, Ross CF (2017) Analysis of the primate “squeeze-back” swallowing mechanism using X-ray reconstruction of moving morphology and fluoromicrometry. FASEB J 31:393.391–393.391

    Google Scholar 

  • Orsbon CP, Gidmark NJ, Ross CF (2018) Dynamic musculoskeletal functional morphology: integrating diceCT and XROMM. Anat Rec 301:378–406

    Article  Google Scholar 

  • Osse JWM (1969) Functional morphology of the head of a perch (Perca fluviatilis L.): an electromyographic study. Neth J Zool 19:289–392

    Article  Google Scholar 

  • Oufiero CE, Holzman RA, Young FA, Wainwright PC (2012) New insights from serranid fishes on the role of trade-offs in suction-feeding diversification. J Exp Biol 215:3845–3855. https://doi.org/10.1242/jeb.074849

    Article  PubMed  Google Scholar 

  • Phelps ME (2000) Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA 97:9226–9233

    Article  CAS  Google Scholar 

  • Rayfield EJ (2007) Finite element analysis and understanding the biomechanics and evolution of living and fossil organisms. Annu Rev Earth Plant Sci 35:541–576. https://doi.org/10.1146/annurev.earth.35.031306.140104

    Article  CAS  Google Scholar 

  • Roberts TJ, Azizi E (2011) Flexible mechanisms: the diverse roles of biological springs in vertebrate movement. J Exp Biol 214:353–361

    Article  Google Scholar 

  • Rowe T, Carlson W, Bottorff W (1995) Thrinaxodon: digital atlas of the skull CD-ROM (Second Edition, for Windows and Macintosh platforms). University of Texas Press, Austin, Texas, 547

    Google Scholar 

  • Rowe T, Brochu CA, Kishi K (1999) Cranial morphology of Alligator mississippiensis and phylogeny of Alligatoroidea. Northbrook, III, Society of Vertebrate Paleontology Memoir 6. J Vertebr Paleontol 19(supplement to 2):1–100

    Google Scholar 

  • Sanford CP, Wainwright PC (2002) Use of sonomicrometry demonstrates the link between prey capture kinematics and suction pressure in largemouth bass. J Exp Biol 205:3445–3457

    PubMed  Google Scholar 

  • Van Wassenbergh S, Aerts P (2009) Aquatic suction feeding dynamics: insights from computational modelling. J R Soc Interface 6:149–158. https://doi.org/10.1098/rsif.2008.0311

    Article  PubMed  Google Scholar 

  • Van Wassenbergh S, Aerts P, Herrel A (2005a) Scaling of suction-feeding kinematics and dynamics in the African catfish, Clarias gariepinus. J Exp Biol 208:2103–2114

    Article  Google Scholar 

  • Van Wassenbergh S, Herrel A, Adriaens D, Aerts P (2005b) A test of mouth-opening and hyoid-depression mechanisms during prey capture in a catfish using high-speed cineradiography. J Exp Biol 208:4627–4639. https://doi.org/10.1242/jeb.01919

    Article  PubMed  Google Scholar 

  • Van Wassenbergh S, Aerts P, Herrel A (2006) Hydrodynamic modelling of aquatic suction performance and intra-oral pressures: limitations for comparative studies. J R Soc Interface 3(9):507–514

    Google Scholar 

  • Van Wassenbergh S, Strother JA, Flammang BE, Ferry-Graham LA, Aerts P (2008) Extremely fast prey capture in pipefish is powered by elastic recoil. J R Soc Interface 5:285–296. https://doi.org/10.1098/rsif.2007.1124

    Article  PubMed  Google Scholar 

  • Wall CE, Vinyard CJ, Williams SH, Gapeyev V, Liu X, Lapp H, German RZ (2011) Overview of FEED, the feeding experiments end-user database. Integr Comp Biol 51:215–223

    Article  Google Scholar 

  • Watson PJ, Groning F, Curtis N, Fitton LC, Herrel A, McCormack SW, Fagan MJ (2014) Masticatory biomechanics in the rabbit: a multi-body dynamics analysis. J R Soc Interface 11. https://doi.org/10.1098/rsif.2014.0564

    Article  Google Scholar 

  • Weijs W, De Jongh H (1977) Strain in mandibular alveolar bone during mastication in the rabbit. Arch Oral Biol 22:667–675

    Article  CAS  Google Scholar 

  • Westneat MW (1990) Feeding mechanics of teleost fishes (Labridae; Perciformes): a test of four-bar linkage models. J Morphol 205:269–295. https://doi.org/10.1002/jmor.1052050304

    Article  PubMed  Google Scholar 

  • Westneat MW (1994) Transmission of force and velocity in the feeding mechanisms of labrid fishes (Teleostei: Perciformes). Zoomorphology 114:103–118. https://doi.org/10.1007/bf00396643

    Article  Google Scholar 

Download references

Acknowledgements

The preparation of this chapter was supported in part by the US National Science Foundation under grant number 1655756 to ALC and ELB and number 1661129 to ELB and by the UK Biotechnology and Biosciences Research Council under a Future Leader Fellowship to ALC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth L. Brainerd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brainerd, E.L., Camp, A.L. (2019). Functional Morphology of Vertebrate Feeding Systems: New Insights from XROMM and Fluoromicrometry. In: Bels, V., Whishaw, I. (eds) Feeding in Vertebrates. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-13739-7_2

Download citation

Publish with us

Policies and ethics