Skip to main content

Feeding, a Tool to Understand Vertebrate Evolution Introduction to “Feeding in Vertebrates”

  • Chapter
  • First Online:
Feeding in Vertebrates

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

A major problem of evolution addressed by Darwin, in his Origin of Species (Darwin in On the origin of species. John Murray, London, 1859) is the evolutionary relationship between complex structures and their function, colloquially referred to as formfunction relationships. Many of the insights that Darwin contributed to our conceptual framework of evolution are based on careful observations of traits in diverse fossil and extant vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abzhanov A (2017) The old and new faces of morphology: the legacy of D’Arcy Thompson’s ‘theory of transformations’ and ‘laws of growth’. Development 144:4284–4297

    Article  CAS  Google Scholar 

  • Abzhanov A, Kuo WP, Hartmann C, Grant BR, Grant PR, Tabin CJ (2006) The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches. Nature 442(7102):563

    Article  CAS  Google Scholar 

  • Abzhanov A, Rodda SJ, McMahon AP, Tabin CJ (2007) Regulation of skeletogenic differentiation in cranial dermal bone. Development 134:3133–3144

    Article  CAS  Google Scholar 

  • Aerts P, D’aout K, Herrel A, Van Damme R (2002) Topics in functional and ecological vertebrate morphology. Shaker Publishing, Maastricht

    Google Scholar 

  • Alfaro ME, Bolnick DI, Wainwright PC (2004) Evolutionary dynamics of complex biomechanical systems: an example using the four-bar mechanism. Evolution 58(3):495–503

    Article  Google Scholar 

  • Arnold SJ (1983) Morphology, performance and fitness. Am Zool 23(2):347–361

    Article  Google Scholar 

  • Ashley-Ross MA, Gillis GB (2002) A brief history of vertebrate functional morphology. Integr Comp Biol 42(2):183–189

    Article  Google Scholar 

  • Barnett SA (2017) The rat: a study in behavior Routledge. Taylor and Francis, Oxford

    Book  Google Scholar 

  • Bels VL, Chardon M, Vandewalle P (1994) Biomechanics of feeding in vertebrates. In: Advances in Comparative and Environmental Physiology, vol. 18. Springer, New York

    Google Scholar 

  • Bels VL, Gasc JP, Casinos A (2003) Vertebrate biomechanics and evolution. BIOS Scientific Publishers Limited, Trowbridge, UK

    Google Scholar 

  • Bengtson S (2002) Origins and early evolution of predation. Paleontol Soc Pap 8:289–318

    Article  Google Scholar 

  • Bhullar BAS, Marugán-Lobón J, Racimo F, Bever GS, Rowe TB, Norell MA, Abzhanov A (2012) Birds have paedomorphic dinosaur skulls. Nature 487(7406):223

    Article  CAS  Google Scholar 

  • Bhullar BAS, Morris ZS, Sefton EM, Tok A, Tokita M, Namkoong B, Abzhanov A (2015) A molecular mechanism for the origin of a key evolutionary innovation the bird beak and palate revealed by an integrative approach to major transitions in vertebrate history. Evolution 69(7):1665–1677

    Article  Google Scholar 

  • Bock WJ, Von Wahlert G (1965) Adaptation and the form–function complex. Evolution 19(3):269–299

    Article  Google Scholar 

  • Bout RG (2003) Biomechanics of the avian skull In: Bels VL, Gasc JP, Casinos A (eds) Vertebrate biomechanics and evolution. BIOS Scientific Publishers Limited, Trowbridge, UK, pp 229–242

    Google Scholar 

  • Bramble DM, Wake DB (1985) Feeding mechanisms of lower vertebrates In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology, vol 13. Harvard University Press, Massachusetts, London, Cambridge, pp 230–261

    Google Scholar 

  • Cooke SB, Terhune CE (2015) Form function and geometric morphometrics. Anat Rec 298(1):5–28

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species. John Murray, London

    Google Scholar 

  • Dial KP, Shubin N, Brainerd EL (2015) Great transformations in vertebrate evolution. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Diogo RJ, Zierman JM, Molnar J, Siomava N, Abdala V (2018) Muscles of chordates: development homologies and evolution. CRC Press, New York

    Book  Google Scholar 

  • Dullemeijer P (1980) Functional morphology and evolutionary biology. Acta Biotheor 29(3–4):151–250

    Article  CAS  Google Scholar 

  • Dullemijer P (1994) Conclusion: a general theory for feeding mechanics. In: Bels VL, Chardon M, Vandewalle P (eds) Biomechanics of feeding in vertebrates. Advances in comparative and environmental physiology, vol 18. Springer, New York, pp 347–358

    Google Scholar 

  • Dutta HM, Munshi JD (2001) Vertebrate functional morphology: horizon of research in the 21st century. Science Publishers, Inc

    Google Scholar 

  • Filosa A, Barker AJ, Dal Maschio M, Baier H (2016) Feeding state modulates behavioral choice and processing of prey stimuli in the zebrafish tectum. Neuron 90(3):596–608

    Article  CAS  Google Scholar 

  • Fish JL (2017) Evolvability of the vertebrate craniofacial skeleton S1084-9521(17). Semin Cell Dev Biol 13:30284-7

    Google Scholar 

  • Gans C (1974) Biomechanics: an approach to vertebrate biology. University of Michgan Press, Ann Arbor

    Google Scholar 

  • Gans C (1994) Introduction. In: Bels VL, Chardon M, Vandewalle P (eds) Biomechanics of feeding in vertebrates. Comparative and environmental physiology, vol 18. Springer, Berlin, pp 1–4

    Google Scholar 

  • Garland T Jr, Losos JB (1994) Ecological morphology of locomotor performance in squamate reptiles. In: Wainwright PC, Reilly SM (eds) Ecological morphology: integrative organismal biology. University of Chicago Press, Chicago, pp 240–302

    Google Scholar 

  • Gould SJ (1971) D’Arcy Thompson and the science of form. New Lit Hist 2(2):229–258

    Article  Google Scholar 

  • Hanken J, Hall BK (1993) The Skull, vol 1–3, University of Chicago Press, Chicago

    Google Scholar 

  • Hiiemae KM, Crompton AW (1985) Mastication, food transport and swallowing morphology. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology, vol 13. Harvard University Press, Massachusetts, London, Cambridge, pp 262–290

    Google Scholar 

  • Hildebrand M, Bramble DM, Liem KF, Wake DB (1985) Functional vertebrate morphology. Harvard University Press, Cambridge

    Google Scholar 

  • Hocking DP, Marx FG, Park T, Fitzgerald EM, Evans AR (2017) A behavioural framework for the evolution of feeding in predatory aquatic mammals. Proc R Soc B 284:20162750

    Article  Google Scholar 

  • Homberger DG (2003) The comparative biomechanics of a prey-predator relationship: the adaptive morphologies of the feeding apparatus of australian black-cockatoos and their food as a basis for reconstruction of the evolutionary history of the psittaciformes. In: Bels VL, Gasc JP, Casinos A (2003) Vertebrate biomechanics and evolution. BIOS Scientific Publishers Limited, Trowbridge, UK, pp 203–228

    Google Scholar 

  • Irschick DJ, Higham TE (2016) Animal athletes: an ecological and evolutionary approach. Oxford University Press, Oxford

    Google Scholar 

  • Johnson JB, Burt DB, DeWitt TJ (2008) Form function and fitness: pathways to survival. Evolution 62(5):1243–1251

    Article  Google Scholar 

  • Kardong KV (2015) Vertebrates: comparative anatomy function evolution, 7th edn. McGraw-Hill, New York

    Google Scholar 

  • Kent G, Carr R (2019) Comparative anatomy of the vertebrates, 9th edn. McGraw-Hill Publishers, New York

    Google Scholar 

  • Lauder GV (1981) Form and function: structural analysis in evolutionary morphology. Paleobiology 7(4):430–442

    Article  Google Scholar 

  • Lauder GV (1983) Food capture. In: Webb PW, Weihs D (eds) Fish biomechanics. Praeger Publishers, New York, pp 280–311

    Google Scholar 

  • Lauder GV (1985) Functional morphology of the feeding mechanism in lower vertebrates. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Feeding mechanisms of lower vertebrates, vol 13. Harvard University Press, Massachusetts, London, Cambridge, pp 230–261

    Google Scholar 

  • Lauder GV (1991) Biomechanics and evolution: integrating physical and historical biology in the study of complex systems. In: Rayner JMV, Wootton RJ (eds) Biomechanics in evolution. Cambridge University Press, Cambridge, pp 1–19

    Google Scholar 

  • Lauder GV, Shaffer HB (1993) Design of feeding systems in aquatic vertebrates: major patterns and their evolutionary interpretations. The Skull 3:113–149

    Google Scholar 

  • Lauder GV, Thomason JJ (1995) On the inference of function from structure. In: Thomason JJ (ed) Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge, pp 1–18

    Google Scholar 

  • Ledogar JA, Dechow PC, Wang Q, Gharpure PH, Gordon AD, Baab KL, Richmond BG (2016) Human feeding biomechanics: performance variation and functional constraints. PeerJ 4:e2242

    Article  Google Scholar 

  • Liem KF (1990) Aquatic versus terrestrial feeding modes: possible impacts on the trophic ecology of vertebrates. Am Zool 30(1):209–221

    Article  Google Scholar 

  • Liem KF, Bemis WF, Walker (2001) Functional anatomy of the vertebrates: an evolutionary perspective. Harcourt College Publishers, New York

    Google Scholar 

  • Marshall CR (2006) Explaining the Cambrian “explosion” of animals. Annu Rev Earth Planet Sci 34:355–384

    Article  CAS  Google Scholar 

  • Marshall CD, Goldbogen JA (2015) Feeding mechanisms marine mammal physiology: requisites for ocean living, pp 95–118

    Google Scholar 

  • McGowan P (1999) A prectical guide to vertebrate mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Mcnulty KP, Vinyard CJ (2015) Morphometry geometry function and the future. Anat Rec 298(1):328–333

    Article  Google Scholar 

  • Olsen AM, Westneat MW (2016) Linkage mechanisms in the vertebrate skull: structure and function of three-dimensional parallel transmission systems. J Morphol 277(12):1570–1583

    Article  Google Scholar 

  • Pestoni S, Degrange FJ, Tambussi CP, Demmel Ferreira MM, Tirao GA (2018) Functional morphology of the cranio-mandibular complex of the Guira cuckoo (Aves). J Morphol 279(6):780–791

    Article  Google Scholar 

  • Reilly SM, Lauder GV (1990) The evolution of tetrapod feeding behavior: kinematic homologies in prey transport. Evolution 44(6):1542–1557

    Article  Google Scholar 

  • Reilly SM, Wainwright PC (1994) Conclusion: ecological morphology and the power of integration. In: Wainwright PC, Reilly SM (eds) Ecological morphology: integrative organismal biology. University of Chicago Press. Chicago, pp 339–354

    Google Scholar 

  • Saxena RK, Saxena S (2015) Comparative anatomy of vertebrates, 2nd edn. Viva Books Private Limited, Anshan

    Google Scholar 

  • Schluter D, Grant PR (1984) Ecological correlates of morphological evolution in a Darwin’s finch Geospiza difficilis. Evolution 38(4):856–869

    Article  Google Scholar 

  • Schwenk K (2000) Feeding: form, function and evolution in tetrapod vertebrates. Elsevier, London

    Google Scholar 

  • Smith KK (1993) The form of the feeding apparatus in terrestrial vertebrates: studies of adaptation and constraint. The Skull 3:150–196

    Google Scholar 

  • Stauffer RC (1957) Haeckel Darwin and ecology. Q Rev Biol 32(2):138–144

    Article  Google Scholar 

  • Stroud JT, Losos JB (2016) Ecological opportunity and adaptive radiation. Annu Rev Ecol Evol Syst 47:507–532

    Article  Google Scholar 

  • Thompson DW (1917) On growth and form, 1st edn. Cambridge University Press, Cambridge UK

    Google Scholar 

  • Thomson KS (1988) Morphogenesis and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Tokita M, Yano W, James HF, Abzhanov A (2017) Cranial shape evolution in adaptive radiations of birds: comparative morphometrics of Darwin’s finches and Hawaiian honeycreepers. Phil Trans R Soc B 372(1713):20150481

    Article  Google Scholar 

  • Tseng ZJ, Flynn JJ (2015) Are cranial biomechanical simulation data linked to known diets in extant taxa? A method for applying diet-biomechanics linkage models to infer feeding capability of extinct species. PLoS One 10(4):e0124020

    Article  Google Scholar 

  • Vannier J (2009) L’Explosion cambrienne ou l’émergence des écosystemes modernes. CR Palevol 8(2–3):133–154

    Article  Google Scholar 

  • Wainwright PC (1994) Functional morphology as a tool in ecological research. In: Wainwright PC, Reilly SM (eds) Ecological morphology: integrative organismal biology. University of Chicago Press, Chicago, pp 42–59

    Google Scholar 

  • Wainwright PC (2007) Functional versus morphological diversity in macroevolution. An Rev Ecol Evol Syst 38:381–401

    Article  Google Scholar 

  • Wake MH (2015) Hierarchies and integration in evolution and development. In: Conceptual change in biology. Springer, Dordrecht, pp 405–420

    Google Scholar 

  • Wilga CA, Ferry LA (2015) Functional anatomy and biomechanics of feeding in elasmobranchs. In: Fish physiology, vol 34. Academic Press, pp 153–187

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Bels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bels, V., Herrel, A. (2019). Feeding, a Tool to Understand Vertebrate Evolution Introduction to “Feeding in Vertebrates”. In: Bels, V., Whishaw, I. (eds) Feeding in Vertebrates. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-13739-7_1

Download citation

Publish with us

Policies and ethics