Skip to main content

Projective Configuration Theorems: Old Wine into New Wineskins

  • Chapter
  • First Online:
Geometry in History

Abstract

We survey some recent results concerning projective configuration theorems in the spirit of the classical theorems of Pappus, Desargues, Pascal, …We hope that this modern take on the old theorems makes this evergreen topic fresh again. We connect configuration theorems to completely integrable systems, identities in Lie algebras of motion, modular group, and other subject of contemporary interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also a recent paper [50] for an extension of Kasner’s theorem from pentagons to Poncelet polygons.

  2. 2.

    The existence of caustics for strictly convex and sufficiently smooth billiard curves is proved in the framework of the KAM theory.

  3. 3.

    See [44] for a curious property of the centroids of Poncelet polygons.

  4. 4.

    See also [25] for another theorem of Ivory and its relation to billiards in conics.

References

  1. N. A’Campo, A. Papadopoulos. Transitional geometry. in Sophus Lie and Felix Klein: The Erlangen Program and its Impact in Mathematics and Physics, 217–235. European Math. Soc., Zürich, 2015.

    Google Scholar 

  2. F. Aicardi. Projective geometry from Poisson algebras. J. Geom. Phys.61 (2011), 1574–1586.

    Article  MathSciNet  Google Scholar 

  3. A. Akopyan, A. Bobenko. Incircular nets and confocal conics. Trans. Amer. Math. Soc.370 (2018), 2825–2854.

    Article  MathSciNet  Google Scholar 

  4. V. Arnold. Lobachevsky triangle altitude theorem as the Jacobi identity in the Lie algebra of quadratic forms on symplectic plane. J. Geom. Phys.53 (2005), 421–427.

    Article  MathSciNet  Google Scholar 

  5. M. Berger. Geometry. I. II. Springer-Verlag, Berlin, 1987.

    Google Scholar 

  6. M. Berger. Geometry revealed. A Jacob’s ladder to modern higher geometry. Springer, Heidelberg, 2010.

    Google Scholar 

  7. A. Bobenko, Yu. Suris. Discrete differential geometry. Integrable structure. Amer. Math. Soc., Providence, RI, 2008.

    Google Scholar 

  8. P. Borwein, W. O. J. Moser. A survey of Sylvester’s problem and its generalizations. Aequationes Math.40 (1990), 111–135.

    Article  MathSciNet  Google Scholar 

  9. J. Conway, A. Ryba. The Pascal mysticum demystified. Math. Intelligencer34 (2012), no. 3, 4–8.

    Article  MathSciNet  Google Scholar 

  10. J. Conway, A. Ryba. Extending the Pascal mysticum. Math. Intelligencer35 (2013), no. 2, 44–51.

    Article  MathSciNet  Google Scholar 

  11. J. L. Coolidge. A treatise on the circle and the sphere. Chelsea Publ. Co., Bronx, N.Y., 1971.

    MATH  Google Scholar 

  12. H. S. M. Coxeter. The inversive plane and hyperbolic space. Abh. Math. Sem. Univ. Hamburg29 (1966), 217–242.

    Article  MathSciNet  Google Scholar 

  13. V. Dragović, M. Radnović. Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics. Birkhäuser/Springer, Basel, 2011.

    Google Scholar 

  14. W. Fenchel. Elementary geometry in hyperbolic space. Walter de Gruyter, Berlin, 1989.

    Book  Google Scholar 

  15. L. Flatto. Poncelet’s theorem. Amer. Math. Soc., Providence, RI, 2009.

    Google Scholar 

  16. D. Fuchs, S. Tabachnikov. Mathematical omnibus. Thirty lectures on classic mathematics. Amer. Math. Soc., Providence, RI, 2007.

    Google Scholar 

  17. M. Gekhtman, M. Shapiro, S. Tabachnikov, and A. Vainshtein, Integrable cluster dynamics of directed networks and pentagram maps, with appendix by A. Izosimov, Adv. Math. 300 (2016), 390–450.

    Google Scholar 

  18. M. Glick. The pentagram map and Y -patterns. Adv. Math.227 (2011), 1019–1045.

    Article  MathSciNet  Google Scholar 

  19. M. Glick, P. Pylyavskyy. Y -meshes and generalized pentagram maps. Proc. Lond. Math. Soc.112 (2016), 753–797.

    Article  MathSciNet  Google Scholar 

  20. B. Grünbaum. Configurations of points and lines. Amer. Math. Soc., Providence, RI, 2009.

    Google Scholar 

  21. T. Hatase. Algebraic Pappus Curves. Ph.D. Thesis, Oregon State University, 2011.

    Google Scholar 

  22. D. Hilbert, S. Cohn-Vossen. Geometry and the imagination. Chelsea Publishing Co, New York, N. Y., 1952.

    MATH  Google Scholar 

  23. P. Hooper. From Pappus’ theorem to the twisted cubic. Geom. Dedicata110 (2005), 103–134.

    Article  MathSciNet  Google Scholar 

  24. N. Ivanov. Arnol’d, the Jacobi identity, and orthocenters. Amer. Math. Monthly118 (2011), 41–65.

    Article  MathSciNet  Google Scholar 

  25. I. Izmestiev, S. Tabachnikov. Ivory’s Theorem revisited. J. Integrable Syst.2 (2017), no. 1, xyx006, 36 pp.

    Google Scholar 

  26. F. Kissler. A family of representations for the modular group. Master Thesis, Heidelberg, 2016.

    MATH  Google Scholar 

  27. V. Kozlov and D. Treshchev. Billiards. A Genetic Introduction to the Dynamics of Systems with Impacts. Amer. Math. Soc., Providence, RI, 1991.

    Google Scholar 

  28. M. Levi, S. Tabachnikov. The Poncelet grid and billiards in ellipses. Amer. Math. Monthly114 (2007), 895–908.

    Article  MathSciNet  Google Scholar 

  29. A. Marden. Outer circles. An introduction to hyperbolic 3-manifolds. Cambridge Univ. Press, Cambridge, 2007.

    Google Scholar 

  30. F. Morley. On a regular rectangular configuration of ten lines. Proc. London Math. Soc. s1–29 (1897), 670–673.

    Google Scholar 

  31. F. Morley. The Celestial Sphere. Amer. J. Math.54 (1932), 276–278.

    Article  MathSciNet  Google Scholar 

  32. F. Morley, F. V. Morley. Inversive geometry. G. Bell & Sons, London, 1933.

    MATH  Google Scholar 

  33. V. Ovsienko, R. Schwartz, S. Tabachnikov, The pentagram map: a discrete integrable system, Comm. Math. Phys.299 (2010), 409–446.

    Article  MathSciNet  Google Scholar 

  34. V. Ovsienko, R. Schwartz, and S. Tabachnikov, Liouville-Arnold integrability of the pentagram map on closed polygons, Duke Math. J.162 (2013), 2149–2196.

    Article  MathSciNet  Google Scholar 

  35. Strasbourg master class on geometry. A. Papadopoulos ed. European Math. Soc., Zürich, 2012.

    Google Scholar 

  36. J. Richter-Gebert. Perspectives on projective geometry. A guided tour through real and complex geometry. Springer, Heidelberg, 2011.

    Google Scholar 

  37. J. F. Rigby. Pappus lines and Leisenring lines. J. Geom.21 (1983), 108–117.

    Article  MathSciNet  Google Scholar 

  38. R. Schwartz. The pentagram map. Experiment. Math.1 (1992), 71–81.

    MathSciNet  MATH  Google Scholar 

  39. R. Schwartz. Pappus’ theorem and the modular group. Inst. Hautes Études Sci. Publ. Math.78 (1993), 187–206 (1994).

    MathSciNet  Google Scholar 

  40. R. Schwartz. Desargues theorem, dynamics, and hyperplane arrangements. Geom. Dedicata87 (2001), 261–283.

    Article  MathSciNet  Google Scholar 

  41. R. Schwartz. The Poncelet grid. Adv. Geom.7 (2007), 157–175.

    Article  MathSciNet  Google Scholar 

  42. R. Schwartz. Discrete monodromy, pentagrams, and the method of condensation. J. Fixed Point Theory Appl.3 (2008), 379–409.

    Article  MathSciNet  Google Scholar 

  43. R. Schwartz, S. Tabachnikov. Elementary surprises in projective geometry. Math. Intelligencer32 (2010), no. 3, 31–34.

    Article  MathSciNet  Google Scholar 

  44. R. Schwartz, S. Tabachnikov. Centers of Mass of Poncelet Polygons, 200 Years After. Math. Intelligencer38 (2016), no. 2, 29–34.

    Article  MathSciNet  Google Scholar 

  45. M. Skopenkov. Theorem about the altitudes of a triangle and the Jacobi identity (in Russian). Matem. Prosv., Ser. 3 11 (2007), 79–89.

    Google Scholar 

  46. F. Soloviev, Integrability of the pentagram map, Duke Math. J.162 (2013), 2815–2853.

    Article  MathSciNet  Google Scholar 

  47. S. Tabachnikov. Billiards. Panor. Synth. No. 1, SMF, 1995.

    Google Scholar 

  48. S. Tabachnikov. Geometry and billiards. Amer. Math. Soc., Providence, RI, 2005.

    Google Scholar 

  49. S. Tabachnikov. Skewers. Arnold Math. J.2 (2016), 171–193.

    Article  MathSciNet  Google Scholar 

  50. S. Tabachnikov. Kasner meets Poncelet. arXiv:1707.09267.

    Google Scholar 

  51. T. Tomihisa. Geometry of projective plane and Poisson structure. J. Geom. Phys.59 (2009), 673–684.

    Article  MathSciNet  Google Scholar 

  52. http://www.cinderella.de/tiki-index.php.

  53. https://www.math.brown.edu/~res/Java/App33/test1.html.

  54. https://www.math.brown.edu/~res/Java/Special/Main.html.

Download references

Acknowledgements

I am grateful to Schwartz for numerous stimulating discussions and to Hooper for an explanation of his work. I was supported by NSF grant DMS-1510055. This article was written during my stay at ICERM; it is a pleasure to thank the Institute for its inspiring and friendly atmosphere.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Tabachnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tabachnikov, S. (2019). Projective Configuration Theorems: Old Wine into New Wineskins. In: Dani, S.G., Papadopoulos, A. (eds) Geometry in History. Springer, Cham. https://doi.org/10.1007/978-3-030-13609-3_9

Download citation

Publish with us

Policies and ethics