Skip to main content

Dry-Friction Damping in Vibrating Systems, Theory and Application to the Bladed Disc Assembly

  • Chapter
  • First Online:
Nonlinear Structural Dynamics and Damping

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 69))

Abstract

The chapter deals with a dry friction damping in the dynamics of model blade systems. The main emphasis is to the solution of damping effects of dry friction contacts in tie-bosses and shrouds. Friction is considered herein from phenomenological view. The variety of modified dry-friction models and results of their equivalent linearization are presented at the beginning. Then numerical models, i.e. discrete analytical, reduced and full finite element, used in our research of non-linear dynamic behavior of the blade cascades and bladed wheel with dry friction contacts are discussed. Dynamics states, such as resonant vibration, free attenuation, self-excitation, are considered. The detailed dynamic analysis of non-linear behavior of these systems due to dry-friction contacts is presented for discrete analytical model with the stick-slip friction contact. Furthermore, the solution of the blade bundle dynamics with the tie-boss coupling by the 3D FE model with surface to surface contacts is described. Because of the rotary periodicity, the bladed wheels bring special resonant vibration mode, i.e. travelling wave mode, in dependence on a type of wheel excitation, the dynamic responses of the wheel to nozzle excitation and self-excitation are studied, too. For validation purposes, we describe the experiments and their results on blade bundles with two types of dry friction coupling. The comparisons with the numerical results show that in spite of simplifications in the modelling of the dry-friction contacts, the used numerical models can deliver very useful information about additional stiffness, damping and stabilization effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Awrejcewicz, J., Pyr’yev, Y.: Nonsmooth Dynamics of Contacting Thermoelastic Bodies. Springer, Berlin (2009)

    Google Scholar 

  2. Bachschmid, N., Bistolfi, S., Ferrante, M., Pennacchi, P., Pesatori, E., Sanvito, M.: An investigation on the dynamic behaviour of blades coupled by shroud contacts. In: Proceedings of SIRM 2011, Darmstadt, Germany (2011)

    Google Scholar 

  3. Bachschmid, N., Pennacchi, P., Lurati, M.: Combining mistuning and snubbing in bladed disks of turbomachinery. In: Proceedings of ISMA 2008, vol. 1–8, pp. 1009–1022, KU Leuven (2008)

    Google Scholar 

  4. Bachschmid, N., Bistolfi, S., Ferrante, M., Pennacchi, P.: An investigation on the dynamic behavior of blades coupled by shroud contacts. In: Proceedings of SIRM 2011, pp. 1–10, Darmstadt, Germany (2011)

    Google Scholar 

  5. Barboteu, M., Danan, D.: Analysis of a dynamic viscoelastic contact problem with normal compliance, normal damped response, and nonmonotone slip rate dependent friction. Adv. Math. Phys. (2016). Article Number: 1562509. https://doi.org/10.1155/2016/1562509

  6. Bogoljubov, N.N., Mitropolski, J.A.: Asymptotic Methods in Theory of Nonlinear Oscillations. GITTL, Moscow (1955). (in Russia)

    Google Scholar 

  7. Botto, D., Zucca, S., Pavone, S., Gola, M.M.: Parametric study of the kinematic behaviour of the underplatform damper and correlation with experimental data. In: Proceedings of ISMA 2008, vol. 1–8, pp. 1039–1053, KU Leuven

    Google Scholar 

  8. Brepta, R., Půst, L., Turek, F.: Mechanical oscillations, TP 71. Sobotales, Prague (1994). (in Czech)

    Google Scholar 

  9. Chen, J.J., Zang, C.P., Zhou, B.A., Petrov, E.P.: Analysis of micro-slip properties for models of bladed disc friction joints. In: Proceedings of the ASME Turbo Expo, vol. 7B (2017). Article Number: V07BT35A021

    Google Scholar 

  10. Dinca, F., Theodosin, C.: Nonlinear and Random Vibrations. Academic press, Bucuresti (1973)

    Google Scholar 

  11. Drozdowski, R., Volker, L., Hafele, D., Vogt D.M.: Experimental and numerical investigation of the nonlinear vibrational behavior of steam turbine last stage blades with friction bolt damping elements. In: Proceedings of the ASME Turbo Expo 2015, vol. 8, Canada (2015)

    Google Scholar 

  12. Ferri, A.A., Dowell, E.H.: Frequency domain solutions to multi-degree-of-freedom, dry friction damped systems. J. Sound Vib. 124(2), 207–224 (1998). ISSN 0022460X

    Google Scholar 

  13. Francavilla, A., Zienkiewicz, O.C.: A note on numerical computation of elastic contact problems. Int. J. Numer. Methods Eng. 9, 913–924 (1975)

    Article  Google Scholar 

  14. Gola, M.M., Liu, T.: A direct experimental–numerical method for investigations of a laboratory under-platform damper behavior. Int. J. Solids 51, 4245–4259 (2014). ISSN 00207683. https://doi.org/10.1016/j.ijsolstr.2014.08.011

  15. Gu, W., Xu, Z., Liu, Y.: A method to predict the non-linear vibratory response of bladed disc system with shrouded dampers. In: Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, vol. 226, pp 1620–1632 (2012). https://doi.org/10.1177/0954406211424671

  16. Guran, A., Pfeiffer, F., Popp, K.: Dynamics with Friction, Modeling, Analysis and Experiments, Part II, Singapore, World Scientific, eBook (2001). ISBN 9789810229542

    Google Scholar 

  17. Hertz, H.: Über die Berührung fester elastischer Körper (On the contact of elastic solids). J. reine und angewandte Mathematik 92, 156–171 (1882)

    Google Scholar 

  18. Hughes, T.J.R., Taylor, R.L., Sackman, J.L., Curnier, A., Kanoknukulchai, W.: A finite element method for a class of contact-impact problems. Comput. Methods Appl. Mech. Eng. 8, 249–276 (1976)

    Article  Google Scholar 

  19. Johnson, K.L.: Contact Mechanics. Cambridge University Press, UK (1985). ISBN 0-521-34796-3

    Google Scholar 

  20. Krylov, N.M., Bogoljubov, N.N.: Introduction in Nonlinear Mexanics. Kiew, Iz-AN-USSR (1937) (in Russia)

    Google Scholar 

  21. Lacarbonara, W., Arvin, H., Bakhtiari-Nejad, F.: A geometrically exact approach to the overall dynamics of elastic rotating blades-part I: linear modal properties. J. Nonlienear Dyn. 70(1), 659–675 (2012)

    Article  MathSciNet  Google Scholar 

  22. Larin, O.O.: Forced vibrations of bladings with the random technological mistuning. In: Proceedings of the ASME Turbo Expo 2010, vol. 6, pp. 667–672 (2010)

    Google Scholar 

  23. Magnus, K., Popp, K.: Schwingungen. Teubner Studienbücher Mechanik, 5 Auflage, Stuttgart (1997)

    Google Scholar 

  24. Minorski, N.: Nonlinear oscillations. Princeton, D. van Nostrand Comp. (1962)

    Google Scholar 

  25. Muszynska, A., Jones, D.I.G.: On tuned bladed disk dynamics: some aspects of friction related mistuning. J. Sound Vib. 86(1), 107–128 (1983)

    Article  Google Scholar 

  26. Muszynska, A., Jones, D.I.G.: Bladed disk dynamics investigated by a discrete model: effects of traveling wave excitation, friction and mistuning. In: Proceedings of the Machine Vibration Monitoring and Analysis Meeting, Oak Brook, Illinois (1982)

    Google Scholar 

  27. Muszynska, A., Jones, D.I.G.: A parametric study of dynamic response of a discrete model of turbomachinery bladed disk. ASME J. Vib. Acoust. Stress Reliab. Des. 105, 434–443 (1983)

    Google Scholar 

  28. Nacivet, S., Pierre, C., Thouverez, F., Jezequel, L.: A dynamic Lagrangian frequency–time method for the vibration of dry-friction-damped systems. J. Sound Vib. 265(1), pp. 201–219 (2003). ISSN 0022460X. https://doi.org/10.1016/s0022-460x(02)01447-5

  29. Pennacchi, P., Chatterton, S., Bachschmid, N., Pesatori, E., Turozzi, G.: A model to study the reduction of turbine blade vibration using the snubbing mechanism. Mech. Syst. Signal Process. 25(4), 1260–1275 (2011)

    Article  Google Scholar 

  30. Pesaresi, L., Salles, L., Jones, A., Green, J.S., Schwingshackl, C.W.: Modelling the nonlinear behaviour of an underplatform damper test rig for turbine applications. Mech. Syst. Signal Process. 85, 662–679 (2017). https://doi.org/10.1016/j.ymssp.2016.09.007

    Article  Google Scholar 

  31. Pešek, L., Hajžman, M., Půst, L., Zeman, V., Byrtus, M., Brůha, J.: Experimental and numerical investigation of friction element dissipative effects in blade shrouding. J. Nonlinear Dyn. 79(3), 1711–1726 (2015)

    Article  Google Scholar 

  32. Pešek, L., Půst, L.: Mathematical model of a blade couple connected by damping element. In: Proceedings of 8th EURODYN2011, pp. 2006–2011, KU Leuven, Belgium (2011)

    Google Scholar 

  33. Pešek, L., Půst, L.: Blade couple connected by damping element with dry friction contacts. J. Theor. Appl. Mech. 52(3), 815–826 (2014)

    Google Scholar 

  34. Pešek, L., Půst, L., Bula, V., Cibulka, J.: Investigation of dry friction effect of shroud damping wire on model test bladed wheel. In: Proceedings of ASME IDETC/CIE 2013, Portland, USA, pages 7 (2013). Article number DETC2013-12851

    Google Scholar 

  35. Pešek, L., Půst, L., Bula, V., Cibulka, J.: Numerical analysis of dry friction damping effect of tie-boss couplings on three blade bundle. In: Proceedings of ASME IDETC/CIE 2017, Cleveland, USA, pages 7 (2017)

    Google Scholar 

  36. Pešek, L., Půst, L., Šulc, P., Šnabl, P., Bula, V.: Stiffening effect and dry-fiction damping of bladed wheel model with tie-boss couplings. In: Springer book Mechanisms and Machine Science, 62, pp. 148–162 (2019). https://doi.org/10.1007/978-3-319-99270-9_11

  37. Pešek, L., Půst, L., Vaněk, F., Veselý, J., Cibulka, J.: Dynamics of model bladed disc with friction elements for vibration suppression. In: Proceedings of 8th IFTOMM Rotordynamics, pp. 332–339 (2010)

    Google Scholar 

  38. Pešek, L., Půst, L., Vaněk, F., Bula, V., Cibulka, J.: Inter-slip damping of twisted blades in opposed bundles under rotation. In: Proceedings of 10th VIRM, Institution of Mechanical Engineers, London, UK, Woodhead Publishing, pages 10 (2012)

    Google Scholar 

  39. Petrov, E.P.: Method for direct parametric analysis of non-linear forced response of bladed disks with friction contact interfaces. ASME J. Turbomach. 126, 654–662 (2004)

    Article  Google Scholar 

  40. Petrov, E.P.: Method for sensitivity analysis of resonance forced response of bladed disks with nonlinear contact interfaces. J. Eng. Gas Turbines Power Trans. ASME 131(2) (2009). https://doi.org/10.1115/1.2969094. Article Number 022510

  41. Petrov, E.P., Ewins, D.J.: State-of-the-art dynamic analysis for non-linear gas turbine structures. In: Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, vol. 218, no. G3, pp. 199–211 (2004). https://doi.org/10.1243/0954410041872906

  42. Petrov, E.P., Ewins, D.J.: Effects of damping and varying contact area at blade-disk joints in forced response analysis of bladed disk assemblies. J. Turbomach. Trans. ASME 128(2), 403–410 (2006). https://doi.org/10.1115/1.2181998

  43. Petrov, E.P., Ewins, D.J.: Advanced modelling of underplatform friction dampers for analysis of bladed disc vibration. In: Proceedings of the ASME TURBO EXPO 2006, vol. 5, pp. 769–778 (2006)

    Google Scholar 

  44. Pierre, C., Ferri, A.A., Dowell, E.H.: Multi-harmonic analysis of dry friction damped systems using an incremental harmonic-balance method. J. Appl. Mech. Trans. ASME 52(4), 958–964 (1985). https://doi.org/10.1115/1.3169175

    Article  MATH  Google Scholar 

  45. Prasad, C.S., Pešek, L.: Analysis of classical flutter in steam turbine blades using reduced order aeroelastic model. In: MATEC Web of Conferences, 211 (2018). https://doi.org/10.1051/matecconf/201821115001. Article number 15001

  46. Půst, L., Tondl, A.: Introduction into theory of nonlinear and quasiharmonic vibrations of mechanical systems. NCSAV, Prague (1956) (in Czech)

    Google Scholar 

  47. Půst, L., Pešek, L., Radolfova, A.: Various types of dry friction characteristics for vibration damping. Eng. Mech. 18(3), 203–224 (2011)

    Google Scholar 

  48. Půst, L., Pešek, L.: Running flutter waves in blades cascades. In: Proceedings of the Engineering Mechanics 2017, Svratka, Czech Republic (2017)

    Google Scholar 

  49. Půst, L., Pešek, L.: Blades force vibration under aero-elastic excitation modeled by Van der Pol. Int. J. Bifurc. Chaos 27(11), (12 pages) (2017)

    Google Scholar 

  50. Rao, J.S.: Turbomachine Blade Vibration. Wiley Eastern Limited, New Delhi (1991)

    Google Scholar 

  51. Rivin, E.I.: Stiffness and Damping in Mechanical Design. Marcel Dekker, New York (1989)

    Google Scholar 

  52. Rizvi, A., Smith, C.W., Rajasekaran, R., Evans, K.E.: Dynamics of dry friction damping in gas turbines: literature survey. J. Vib. Control 22(1), 296–305 (2016). https://doi.org/10.1177/1077546313513051

    Article  Google Scholar 

  53. Sanliturk, K.Y., Imregun, M., Ewins, D.J.: Harmonic balance vibration analysis of turbine blades with friction dampers. J. Vib. Acoust. 119(1), 96–103 (2014). https://doi.org/10.1115/1.2889693

    Article  Google Scholar 

  54. Santhosh, B., Narayanan, S., Padmanabhan, A.C.: Nonlinear dynamics of shrouded turbine blade system with impact and friction. Appl. Mech. Mater. 706, 81–92 (2014). ISSN 16609336. http://dx.doi.org/10.4028/www.scientific.net/AMM.706.81

  55. Sextro, W.: Dynamical Contact Problems with Friction. Springer, Berlin (2007)

    Book  Google Scholar 

  56. Simo, J.C., Laursen, T.A.: An augmented lagrangian treatment of contact problems involving friction. Comput. Struct. 42(1), 97–116 (1992)

    Article  MathSciNet  Google Scholar 

  57. Suss, D., Jerschl, M., Willner, K.: Adaptive harmonic balance analysis of dry friction damped systems. J. Nonlinear Dyn. 1. 34TH IMAC Book Series: Conference Proceedings of the Society for Experimental Mechanics Series, pp. 405–414 (2016). https://doi.org/10.1007/978-3-319-29739-2_36

  58. Voldřich, J., Lazar J., Polach P., Morávka Š.: Finding the stiffnesses of interface contact elements for the computational model of steam turbine blading. In: Proceedings of ASME IDETC/CIE 2017, Cleveland, USA, pages 12 (2017)

    Google Scholar 

  59. Wiercigroch, M., de Kraker, B.: Applied Nonlinear Dynamics and Chaos in Mechanical Systems with Discontinuities, World Scientific Series, vol. 28, London (2000)

    Google Scholar 

  60. Wriggers, P., Van Vu, T., Stein, E.: Finite element formulation of large deformation impact contact problems with friction. Comput. Struct. 37, 319–331 (1990)

    Article  Google Scholar 

  61. Yamashita, Y., Shiohata, K., Kudo, T., Yoda, H.: Vibration characteristics of a continuous cover blade structure with friction contact surfaces of a steam turbine. In: Proceedings of 10th VIRM, pp. 323–332, London, UK (2012)

    Google Scholar 

  62. Zeman, V., Byrtus, M., Hajžman, M.: Harmonic forced vibration of two rotating blades with friction damping. Eng. Mech. 17(3/4), 187–200 (2010)

    Google Scholar 

  63. Zmitrowicz, A.: A vibration analysis of a turbine blade system damped by dry friction forces. Int. J. Mech. Sci. 23(12), 741–761 (1981). https://doi.org/10.1016/0020-7403(81)90012-6

    Article  MATH  Google Scholar 

  64. Zucca, S., Firrone, C.M., Muzio, A., Gola, M.: Numerical assessment of friction damping at turbine blade root joints by simultaneous calculation of the static and dynamic contact loads. J. Nonlinear Dyn. 67(3), 1943–1955 (2012). ISSN 0924-090X. http://dx.doi.org/10.1007/s11071-011-0119-y

  65. Zucca, S., Firrone, C.M.: Nonlinear dynamics of mechanical systems with friction contacts: coupled static and dynamic multi-harmonic balance method and multiple solutions. J. Sound Vib. 333(3), 916–926 (2014). https://doi.org/10.1016/j.jsv.2013.09.032

Download references

Acknowledgements

This work was supported by the research project of the Czech Science Foundation No. 16-04546S “Aero-elastic couplings and dynamic behavior of rotational periodic bodies”. The HPC calculations was supported by The Czech Ministry of Education, Youth and Sports from the Large Infrastructures for Research, Experimental Development and Innovations project “IT4 Innovations National Supercomputing Center—LM2015070”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludek Pesek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pesek, L., Pust, L., Snabl, P., Bula, V., Hajzman, M., Byrtus, M. (2019). Dry-Friction Damping in Vibrating Systems, Theory and Application to the Bladed Disc Assembly. In: Jauregui, J. (eds) Nonlinear Structural Dynamics and Damping. Mechanisms and Machine Science, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-030-13317-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13317-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13316-0

  • Online ISBN: 978-3-030-13317-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics