Skip to main content

Nanobiopesticides for Crop Protection

  • Chapter
  • First Online:
Nanobiotechnology Applications in Plant Protection

Abstract

Biopesticides have long been attracting global attention as a safer strategy over chemical pest control, with potentially less risk to humans and the environment. Globally, the use of biopesticides is increasing steadily by 10% every year. Nanotechnology has provided new tools in the form of nanopesticides and nanosensors for pest management in agriculture with the concept of minimal usage for maximum effect. Nanopesticides are formulations of active ingredient of a pesticide in nanoform that have slow degradation, targeted delivery, and controlled release of active ingredient for longer period that make them environmentally safe and less toxic in comparison with conventional chemical pesticides. Several studies have reported an enhancement in the efficacy of certain biological substances on pests and a reduction of losses due to physical degradation through encapsulation of these substances in nanoparticulate systems. Research pertaining to nanobiopesticide development and evaluation till date has been limited to laboratory with approaches like development of nanocomposites, nanoengineered biopesticides, and capping of nanoparticles with biopesticides, etc. Enabling successful utilization of these formulations for pest management at the field level requires drafting of suitable biosafety and registration guidelines that are globally acceptable. In this chapter, we review the progress of research carried out in development of nanobiopesticides for crop protection, viz., management of insect pests, diseases, and nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad P, Favery B, Rosso MN, Castagnone-Sereno P (2003) Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Mol Plant Pathol 4(4):217–224

    Article  CAS  PubMed  Google Scholar 

  • Abbassy MA, Abdel-Rasoul MA, Nassar AM, Soliman BS (2017) Nematicidal activity of silver nanoparticles of botanical products against root-knot nematode, Meloidogyne incognita. Arch Phytopathology Plant Protect 50(17–18):909–926

    Article  CAS  Google Scholar 

  • Akoto O, Bismark Eshun F, Darko G, Adei E (2014) Concentrations and health risk assessments of heavy metals in fish from the Fosu Lagoon. Int J Environ Res 8(2):403–410

    Google Scholar 

  • Ali EO, Shakil NA, Rana VS, Sarkar DJ, Majumder S, Kaushik P, Singh BB, Kumar J (2017) Antifungal activity of nano emulsions of neem and citronella oils against phytopathogenic fungi, Rhizoctonia solani and Sclerotium rolfsii. Ind Crop Prod 108:379–387

    Article  CAS  Google Scholar 

  • Ali S, Waqas MS, Elabasy A (2018) Preparation and characterization of emamectin benzoate nanoformulations based on colloidal delivery systems and use in controlling Plutella xylostella (L.) (Lepidoptera: Plutellidae). RSC Adv 8:15687–15697

    Article  Google Scholar 

  • Al-Samarrai AM (2012) Nanoparticles as alternative to pesticides in management plant diseases – a review. Int J Sci Res Pub 2(4):1–4

    Google Scholar 

  • Avato P, D’Addabbo T, Leonetti P, Argentieri MP (2013) Nematicidal potential of Brassicaceae. Phytochem Rev 12(4):791–802

    Article  CAS  Google Scholar 

  • Benedict JH (2003) Strategies for controlling insect, mite and nematode pests. In: Chrispeels MJ, Sadava DE (eds) Plants, genes and crop bio-technology. Jones and Bartlet Publishers, Sudbury, pp 414–442

    Google Scholar 

  • Bhandari P, Pant M, Patanjali PK, Raza SK (2016) Advances in bio-botanicals formulations with incorporation of nanotechnology in intensive crop management. In: Advances and applications through fungal nanobiotechnology. Springer, Cham, pp 291–305

    Chapter  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Advances and Applications through Fungal Nanobiotechnology. Springer, Cham, pp 307–319

    Chapter  Google Scholar 

  • Bhau BS, Phukon P, Gogoi B, Borah B, Baruah J, Sharma DK, Wann SB (2016) A novel tool of nanotechnology: nanoparticle mediated control of nematode infection in plants. In: Singh D, Singh H, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 253–269. https://doi.org/10.1007/978–81–322–2644–4_16

    Chapter  Google Scholar 

  • Caboni P, Saba M, Tocco G, Casu L, Murgia A, Maxia A, Menkissoglu-Spiroudi U, Ntalli N (2013) Nematicidal activity of mint aqueous extracts against the root-knot nematode Meloidogyne incognita. J Agri Food Chem 61(41):9784–9788

    Article  CAS  Google Scholar 

  • Cao J, Guenther RH, Sit TL, Lommel SA, Opperman CH, Willoughby JA (2015) Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control. ACS Appl Mater Interfaces 7(18):9546–9553

    Article  CAS  PubMed  Google Scholar 

  • Cascone MG, Lazzeri L, Carmignani C, Zhu Z (2012) Gelatin nanoparticles produced by a simple W/O emulsion as delivery system for methotrexate. J Mater Sci Mater Med 13(5):523–526

    Article  Google Scholar 

  • Chandra JH, Raj LA, Namasivayam SK, Bharani RA (2013) Improved pesticidal activity of fungal metabolite from Nomuraea rileyi with chitosan nanoparticles. In: Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET), 2013 international conference on July 24. IEEE, pp 387–390

    Google Scholar 

  • Chandrashekharaiah M, Kandakoor SB, Gowda GB, Kammar V, Chakravarthy AK (2015) Nanomaterials: a review of their action and application in pest management and evaluation of DNA-tagged particles. In: InNew horizons in insect science: towards sustainable pest management. Springer, New Delhi, pp 113–126

    Google Scholar 

  • Chang CP, Leung TK, Lin SM, Hsu CC (2006) Release properties on gelatin-gum arabic microcapsules containing camphor oil with added polystyrene. Colloids Surf B Biointerfaces 50(2):136–140

    Article  CAS  PubMed  Google Scholar 

  • Chhipa H (2017) Nanofertilizers and nanopesticides for agriculture. Environ Chem Lett 15(1):15–22

    Article  CAS  Google Scholar 

  • Chitwood DJ (2002) Phytochemical based strategies for nematode control. Annu Rev Phytopathol 40:221–249

    Article  CAS  PubMed  Google Scholar 

  • Choudhary MK, Joshi A, Sharma SS, Saharan V (2017) Effect of laboratory synthesized Cu-Chitosan nanocomposites on control of PFSR disease of Maize caused by Fusarium verticillioids. Int J Curr Microbiol Appl Sci 6:1656–1664

    Article  CAS  Google Scholar 

  • Christofoli M, Costa EC, Bicalho KU, de Cássia Domingues V, Peixoto MF, Alves CC, Araújo WL, de Melo Cazal C (2015) Insecticidal effect of nanoencapsulated essential oils from Zanthoxylum rhoifolium (Rutaceae) in Bemisia tabaci populations. Ind Crops Prod 70:301–308

    Article  CAS  Google Scholar 

  • Cui B, Wang C, Zhao X, Yao J, Zeng Z, Wang Y, Sun C, Liu G, Cui H (2018) Characterization and evaluation of avermectin solid nanodispersion prepared by microprecipitation and lyophilisation techniques. PloS One 13(1):e0191742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Addabbo T, Avato P, Tava A (2009) Nematicidal potential of materials from Medicago spp. Eur J Plant Pathol 125(1):39–49

    Article  Google Scholar 

  • D’Addabbo T, Carbonara T, Leonetti P, Radicci V, Tava A, Avato P (2011) Control of plant parasitic nematodes with active saponins and biomass from Medicago sativa. Phytochem Rev 10(4):503–519

    Article  CAS  Google Scholar 

  • D’Addabbo T, Laquale S, Lovelli S, Candido V, Avato P (2014) Biocide plants as a sustainable tool for the control of pests and pathogens in vegetable cropping systems. Ital J Agron 9(4):137–145

    Article  Google Scholar 

  • D’Addabbo T, Argentieri MP, Radicci V, Grassi F, Avato P (2017) Artemisia annua compounds have potential to manage root-knot and potato cyst nematodes. Ind Crop Prod 108:195–200

    Article  CAS  Google Scholar 

  • Dhaliwal GS, Vikas J, Dhawan AK (2010) Insect pest problems and crop losses: changing trends. Ind J Ecol 37:1–7

    Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26(6):913–924

    Article  CAS  PubMed  Google Scholar 

  • Du WL, Xu ZR, Han XY, Xu YL, Miao ZG (2008) Preparation, characterization and adsorption properties of chitosan nanoparticles for eosin Y as a model anionic dye. J Hazard Mater 153:152–156

    Article  CAS  PubMed  Google Scholar 

  • Elling AA (2013) Major emerging problems with minor Meloidogyne species. Phytopathology 103(11):1092–1102

    Article  PubMed  Google Scholar 

  • Feng BH, Peng LF (2012) Synthesis and characterization of carboxymethyl chitosan carrying ricinoleic functions as an emulsifier for azadirachtin. Carbohydr Polym 88(2):576–582

    Article  CAS  Google Scholar 

  • Fernandes CP, de Almeida FB, Silveira AN, Gonzalez MS, Mello CB, Feder D, Apolinário R, Santos MG, Carvalho JC, Tietbohl LA, Rocha L (2014) Development of an insecticidal nanoemulsion with Manilkara subsericea (Sapotaceae) extract. J Nanobiotechnol 12(1):22

    Article  CAS  Google Scholar 

  • Forim MR, Fernandes JB (2012) Secondary metabolism as a measurement of efficacy of botanical extracts: the use of Azadirachta indica (Neem) as a model. In: Insecticides – advances in integrated pest management. InTechOpen. https://doi.org/10.5772/27961

  • Gao Y, Huang Q, Su Q, Liu R (2014) Green synthesis of silver nanoparticles at room temperature using kiwifruit juice. Spectrosc Lett 47(10):790–795

    Article  CAS  Google Scholar 

  • Garg A, Singh S (2011) Enhancement in antifungal activity of eugenol in immunosuppressed rats through lipid nanocarriers. Colloids Surf B: Biointerfaces 87(2):280–288

    Article  CAS  PubMed  Google Scholar 

  • Gholami-Shabani M, Gholami-Shabani Z, Shams-Ghahfarokhi M, Jamzivar F, Razzaghi-Abyaneh M (2017) Green nanotechnology: biomimetic synthesis of metal nanoparticles using plants and their application in agriculture and forestry. In: Kumar RPM, Kumar V (eds) Nanotechnology: an agricultural paradigm. Springer Nature, Singapore, pp 133–175. https://doi.org/10.1007/978–981–10–4573–8_8

    Chapter  Google Scholar 

  • González JO, Stefanazzi N, Murray AP, Ferrero AA, Band BF (2015) Novel nanoinsecticides based on essential oils to control the German cockroach. J Pest Sci 88(2):393–404

    Article  Google Scholar 

  • http://www.calctool.org/CALC/prof/bio/protein_size

  • https://www.seipasa.com/en/blog/biopesticides-growth-global-market

  • Huang KS, Sheu YR, Chao IC (2009) Preparation and properties of nanochitosan. Polym Plast Technol Eng 48(12):1239–1243

    Article  CAS  Google Scholar 

  • Huang QR, Yu HL, Ru QM (2010) Bioavailability and delivery of nutraceuticals using nanotechnology. J Food Sci 75:50–57

    Article  CAS  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  CAS  PubMed  Google Scholar 

  • Kamaraj C, Balasubramani G, Deepak P, Aiswarya D, Arul D, Amutha V, Karthi S, Perumal P (2018) Bio-pesticidal effects of Trichoderma viride formulated titanium dioxide nanoparticle and their physiological and biochemical changes on Helicoverpa armigera (Hub.). Pesticide Biochem Physiol 149:26–36

    Article  CAS  Google Scholar 

  • Kitherian S (2017) Nano and bio-nanoparticles for insect control. Res J Nanosci Nanotechnol 7:1–9. https://doi.org/10.3923/rjnn.2017.1.9

    Article  Google Scholar 

  • Kumar S, Singh A (2015) Biopesticides: present status and the future prospects. J Fertil Pestic 6:e129. https://doi.org/10.4172/2471–2728.1000e129

    Article  Google Scholar 

  • Kumar SA, Sharma AK, Rawat SS, Jain DK, Ghosh S (2013) Use of pesticides in agriculture and livestock animals and its impact on environment of India. Asian J Environ Sci 1:51–57

    Google Scholar 

  • Lai F, Wissing SA, Müller RH, Fadda AM (2006) Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. Aaps Pharmscitech 7(1):E10

    Article  PubMed  PubMed Central  Google Scholar 

  • Lan L, Chen JC, Yuan YZ, Li DZ, Wu W, Hua RW, Hong PX, Guan X (2015) The effect of nano-Mg(OH)2 on insecticidal activity and UV resistance of Bacillus thuringiensis protein. J Agric Biotech 23:1452–1457

    Google Scholar 

  • Lao SB, Zhang ZX, Xu HH, Jiang GB (2010) Novel amphiphilic chitosan derivatives: synthesis, characterization and micellar solubilization of rotenone. Carbohydr Polym 82(4):1136–1142

    Article  CAS  Google Scholar 

  • Li L, Chen J, Yang Z, Li D, Wu W, Rao W, Pan X, Guan X (2015) The effect of nano-Mg (OH) 2 on insecticidal activity and UV resistance of Bacillus thuringiensis protein. J Agri Biotechnol 23(11):1452–1457

    CAS  Google Scholar 

  • Liang W, Yu A, Wang G, Zheng F, Jia J, Xu H (2018) Chitosan-based nanoparticles of avermectin to control pine wood nematodes. Int J Biol Macromol 112:258–263

    Article  CAS  PubMed  Google Scholar 

  • Luiz de Oliveira J, Ramos Campos EV, Fraceto LF (2018) Recent developments and challenges for nanoscale formulation of botanical pesticides for use in sustainable agriculture. J Agri Food Chem 66(34):8898–8913

    Article  CAS  Google Scholar 

  • Maghsoudi S, Jalali E (2017) Noble UV protective agent for Bacillus thuringiensis based on a combination of graphene oxide and olive oil. Sci Rep 7(1):11019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahadeva Swamy MH, Asokan R (2013) Bacillus thuringiensis as ‘nanoparticles’–a perspective for crop protection. Nanosci Nanotechnol-Asia 3(1):102–105

    Google Scholar 

  • Malaikozhundan B, Vaseeharan B, Vijayakumar S, Thangaraj MP (2017) Bacillus thuringiensis coated zinc oxide nanoparticle and its biopesticidal effects on the pulse beetle, Callosobruchus maculatus. J Photochem Photobiol B: Biol 174:306–314

    Article  CAS  Google Scholar 

  • Malarvannan S, Kumar SS, Prabavathy VR, Sudha N (2008) Individual and synergistic effects of leaf powder of few medicinal plants against American bollworm, Helicoverpa armigera (Hubner)(Noctuidae: Lepidoptera). Asian J Exp Biol Sci 22(1):79–88

    CAS  Google Scholar 

  • Mishra A, Kumari M, Pandey S, Chaudhry V, Gupta KC, Nautiyal CS (2014a) Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol 166:235–242

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh HB (2014b) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9(5):e97881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moustafa DM, El-Alim SH, Asfour MH, Al-Okbi SY, Mohamed DA, Awad G (2015) Transdermal nanoemulsions of Foeniculum vulgare Mill. essential oil: preparation, characterization and evaluation of antidiabetic potential. J Drug Delivery Sci Technol 29:99–106

    Article  CAS  Google Scholar 

  • Murthy KS, Vineela V, Vimala Devi, PS (2014) “http://www.inderscience.com/info/inarticle.php?artid=65470” Generation of nanoparticles from technical powder of the insecticidal bacterium Bacillus thuringiensis var. kurstaki for improving efficacy. Int J Biomedic Nanosci and Nanotechnol 3(3):236–250. https://doi.org/10.1504/IJBNN.2014.065470

  • Namasivayam SK, Bharani RA, Karunamoorthy K (2018) Insecticidal fungal metabolites fabricated chitosan nanocomposite (IM-CNC) preparation for the enhanced larvicidal activity – an effective strategy for green pesticide against economic important insect pests. Int J Biol Macromol 120:921–944

    Article  CAS  Google Scholar 

  • Nassar AMK (2016) Effectiveness of silver Nano-particles of extracts of Urtica urens (Urticaceae) against root-knot nematode Meloidogyne incognita. Asian J Nematol 5:14–19. https://doi.org/10.3923/ajn.2016.14.19

    Article  Google Scholar 

  • Natarajan N, Cork A, Boomathi N, Pandi R, Velavan S, Dhakshnamoorthy G (2006) Cold aqueous extracts of African marigold, Tagetes erecta for control tomato root knot nematode, Meloidogyne incognita. Crop Prot 25(11):1210–1213

    Article  Google Scholar 

  • Nguyen HM, Hwang IC, Park JW, Park HJ (2012) Photoprotection for deltamethrin using chitosan-coated beeswax solid lipid nanoparticles. Pest Manag Sci 68(7):1062–1068

    Article  CAS  PubMed  Google Scholar 

  • Nicol JM, Turner SJ, Coyne DL, Den Nijs L, Hockland S, Maafi ZT (2011) Current nematode threats to world agriculture. In: Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, pp 21–43

    Chapter  Google Scholar 

  • Noveriza R, Trisno J, Rahma H, Yuliani S(2018) Effectiveness of several dosage formula of oil and nano emulsion of citronella against vascular streak dieback (VSD) disease on cocoa. In IOP conference series: Earth and Environmental Science 122(1):012028. IOP Publishing

    Google Scholar 

  • Ntalli NG, Caboni P (2012) Botanical nematicides: a review. J Agri Food Chem 60(40):9929–9940

    Article  CAS  Google Scholar 

  • Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agri Food Chem 64(7):1447–1483

    Article  CAS  Google Scholar 

  • Paula HC, Sombra FM, Abreu FO, Paul R (2010) Lippia sidoides essential oil encapsulation by angico gum/chitosan nanoparticles. J Braz Chem Soc 21(12):2359–2366

    Article  CAS  Google Scholar 

  • Paula HC, Sombra FM, de Freitas Cavalcante R, Abreu FO, de Paula RC (2011) Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil. Mater Sci Eng C 31(2):173–178

    Article  CAS  Google Scholar 

  • Paula HC, Rodrigues ML, Ribeiro WL, Stadler AS, Paula RC, Abreu FO (2012) Protective effect of cashew gum nanoparticles on natural larvicide from Moringa oleifera seeds. J Appl Polymer Sci 124(3):1778–1784

    Article  CAS  Google Scholar 

  • Prakasam V, Raguchander T, Prabakar K (1998) Plant disease management. AE Publications, Coimbatore, Tamil Nadu, p 128

    Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis? Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(2):316–330

    Article  PubMed  Google Scholar 

  • Qin X, Xiang X, Sun X, Ni H, Li L (2016) Preparation of nanoscale Bacillus thuringiensis chitinases using silica nanoparticles for nematicide delivery. Int J Biol Macromol 82:13–21

    Article  CAS  PubMed  Google Scholar 

  • Rabea EI, Badawy ME, Rogge TM, Stevens CV, Höfte M, Steurbaut W, Smagghe G (2005) Insecticidal and fungicidal activity of new synthesized chitosan derivatives. Pest Manag Sci 61(10):951–960

    Article  CAS  PubMed  Google Scholar 

  • Rao W, Zhan Y, Chen S, Xu Z, Huang T, Hong X, Zheng Y, Pan X, Guan X (2018) Flowerlike Mg (OH) 2 Cross-Nanosheets for Controlling Cry1Ac Protein Loss: Evaluation of Insecticidal Activity and Biosecurity. J Agri Food Chem 66(14):3651–3657

    Article  CAS  Google Scholar 

  • Rodrigues ED, Ferreira AM, Vilhena JC, Almeida FB, Cruz RA, Florentino AC, Souto RN, Carvalho JC, Fernandes CP (2014) Development of a larvicidal nanoemulsion with Copaiba (Copaifera duckei) oleoresin. Revista Brasileira de Farmacognosia 24(6):699–705

    Article  CAS  Google Scholar 

  • Sabbour MM, Singer SM (2016) Incidence effect by nanospinosad of the invasivetomato leafminer, Tuta absoluta Meyrick, (Lepidoptera: Gelechiidae) under laboratory and field condition. J Chem Pharm Res 8:829–833

    CAS  Google Scholar 

  • Sankar MV, Abideen S (2015) Pesticidal effect of green synthesized silver and lead nanoparticles using Avicennia marina against grain storage pest Sitophilus oryzae. Int J Nanomater Biostruct 5(3):32–39

    Google Scholar 

  • Sekhar K, Prasad RD, Venkatesham M (2013) Synthesis, Characterization and in vitro Antifungal Activity of Chitosan. Nanoparticles 2:767. https://doi.org/10.4172/scientificreports.767

    Article  Google Scholar 

  • Sharma H, Dhirta B, Shirkot P (2017) Evaluation of biogenic iron nano formulations to control Meloidogyne incognita in okra. IJCS 5(5):1278–1284

    CAS  Google Scholar 

  • Sharma A, Sharma NK, Srivastava A, Kataria A, Dubey S, Sharma S, Kundu B (2018) Clove and lemongrass oil based non-ionic nanoemulsion for suppressing the growth of plant pathogenic Fusarium oxysporum f. sp. lycopersici. Ind Crop Prod 123:353–362

    Article  CAS  Google Scholar 

  • Sheridan K (2017) Bee-harming pesticides in 75 percent of honey worldwide: study. https://phys.org/news/2017-10-bee-harming-pesticides-percent-honey-worldwide.html

  • Shoaib A, Waqas M, Elabasy A, Cheng X, Zhang Q, Shi Z (2018) Preparation and characterization of emamectin benzoate nanoformulations based on colloidal delivery systems and use in controlling Plutella xylostella (L.)(Lepidoptera: Plutellidae). RSC Adv 8(28):15687–15697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidhu HS (2018) Potential of plant growth-promoting rhizobacteria in the management of nematodes: a review. J Entomol Zool Stud 6(3):1536–1545

    Google Scholar 

  • Singh P, Jayaramaiah RH, Sarate P, Thulasiram HV, Kulkarni MJ, Giri AP (2014a) Insecticidal potential of defense metabolites from Ocimum kilim and scharicum against Helicoverpa armigera. PloS One 9(8):e104377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh K, Panghal M, Kadyan S, Chaudhary U, Yadav JP (2014b) Green silver nanoparticles of Phyllanthus amarus: as an antibacterial agent against multi drug resistant clinical isolates of Pseudomonas aeruginosa. J Nanobiotechnol 12(1):40

    Article  CAS  Google Scholar 

  • Singh HB, Mishra S, Fraceto LF, de Lima R (2018) Emerging trends in agri-nanotechnology: fundamental and applied aspects. CABI, USA, p 299

    Google Scholar 

  • Siva C, Kumar MS (2015) Pesticidal activity of eco-friendly synthesized silver nanoparticles using Aristolochia indica extract against Helicoverpa armigera Hubner (Lepidoptera: Noctuidae). Int J Adv Sci Tech Res 2:197–226

    Google Scholar 

  • Soliman BSM, Abbassy MA, Abdel-Rasoul MA, Nassar AMK (2017) Efficacy of silver nanoparticles of extractives of Artemisia judaica against root-knot nematode. J Environ Stud Res 7(2):1–13

    CAS  Google Scholar 

  • Surega R (2015). Ph.D Thesis. Green synthesis of bioactive silver nanoparticles using plant extracts and their antinemic properties, TNAU

    Google Scholar 

  • Tamez-Guerra P, McGuire MR, Behle RW, Shasha BS, Galn Wong LJ (2000) Assessment of microencapsulated formulations for improved residual activity of Bacillus thuringiensis. J Econ Entomol 93(2):219–225

    Article  CAS  PubMed  Google Scholar 

  • Vineela V, Nataraj T, Reddy G, Vimala Devi PS (2017) Enhanced bioefficacy of Bacillus thuringiensis var. kurstaki against Spodoptera litura (Lepidoptera: Noctuidae) through particle size reduction and formulation as a suspension concentrate. Biocontrol Sci Technol 27(1):58–69

    Article  Google Scholar 

  • Wang Y, Wang A, Wang C, Cui B, Sun C, Zhao X, Zeng Z, Shen Y, Gao F, Liu G, Cui H (2017) Synthesis and characterization of emamectin-benzoate slow release microspheres with different surfactants. Sci Rep 7:12761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang A, Wang Y, Sun C, Wang C, Cui B, Zhao X, Zeng Z, Yao J, Yang D, Liu G, Cui H (2018) Fabrication, characterization, and biological activity of avermectin nano-delivery systems with different particle sizes. Nanoscale Res Lett 13:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CC, Hu Y, Miller M, Aroian RV, Sailor MJ (2015) Protection and delivery of anthelmintic protein Cry5B to nematodes using mesoporous silicon particles. ACS Nano 9(6):6158–6167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae). J Agri Food Chem 57(21):10156–10162

    Article  CAS  Google Scholar 

  • Yang D, Cui B, Wang C, Zhao X, Zeng Z, Wang Y, Sun C, Liu G, Cui H (2017) Preparation and characterization of Emamectin benzoate solid nanodispersion. J Nanomater 2017:1. https://doi.org/10.1155/2017/6560780

    Article  CAS  Google Scholar 

  • Zahir AA, Bagavan A, Kamaraj C, Elango G, Rahuman AA (2012) Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopest 5:95

    Google Scholar 

  • Zaki AM, Zaki AH, Farghali AA, Abdel-Rahim EF (2017) Sodium titanate––Bacillus as a new nanopesticide for cotton leaf-worm. J Pure App Microbiol 11(2):725–733

    Article  CAS  Google Scholar 

  • Zhang W (2018) Global pesticide use: Profile, trend, cost/benefit and more. Proc Int Acad Ecol Environ Sci 8(1):1

    Google Scholar 

  • Zhang W, Jiang F, Ou J (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1(2):125

    CAS  Google Scholar 

  • Zhu G, Mallery SR, Schwendeman SP (2000) Stabilization of proteins encapsulated in injectable poly (lactide-co-glycolide). Nat Biotechnol J 18(1):52

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Vimala Devi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vimala Devi, P.S., Duraimurugan, P., Chandrika, K.S.V.P., Gayatri, B., Prasad, R.D. (2019). Nanobiopesticides for Crop Protection. In: Abd-Elsalam, K., Prasad, R. (eds) Nanobiotechnology Applications in Plant Protection. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-13296-5_8

Download citation

Publish with us

Policies and ethics