Skip to main content

Modular Verification of Vehicle Platooning with Respect to Decisions, Space and Time

  • Conference paper
  • First Online:
Formal Techniques for Safety-Critical Systems (FTSCS 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1008))

Abstract

The spread of autonomous systems into safety-critical areas has increased the demand for their formal verification, not only due to stronger certification requirements but also to public uncertainty over these new technologies. However, the complex nature of such systems, for example, the intricate combination of discrete and continuous aspects, ensures that whole system verification is often infeasible. This motivates the need for novel analysis approaches that modularise the problem, allowing us to restrict our analysis to one particular aspect of the system while abstracting away from others. For instance, while verifying the real-time properties of an autonomous system we might hide the details of the internal decision-making components. In this paper we describe verification of a range of properties across distinct dimensions on a practical hybrid agent architecture. This allows us to verify the autonomous decision-making, real-time aspects, and spatial aspects of an autonomous vehicle platooning system. This modular approach also illustrates how both algorithmic and deductive verification techniques can be applied for the analysis of different system subcomponents.

Work supported EPSRC grants EP/N007565 (Science of Sensor Systems Software), EP/R026092 (FAIR-SPACE RAI Hub) and EP/L024845/1 (Verifiable Autonomy).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://eutruckplatooning.com/.

  2. 2.

    https://trl.co.uk/news/news/government-gives-green-light-first-operational-vehicle-platooning-trial.

  3. 3.

    The Open Racing Car Simulator https://sourceforge.net/projects/torcs.

  4. 4.

    The model and the verified properties can be found at https://github.com/VerifiableAutonomy/AgentPlatooning.

  5. 5.

    Since all following vehicles are defined similarly, this choice does not affect the verification.

  6. 6.

    A =“all paths”; E = “exist a path”; \(\Box \) = “Always”; \(\lozenge \) = “Eventually”

References

  1. Aitken, J., et al.: Autonomous nuclear waste management. Intell. Syst. (2018). https://doi.org/10.1109/MIS.2018.111144814

  2. Amoozadeh, M., Deng, H., Chuah, C.N., Zhang, H.M., Ghosal, D.: Platoon management with cooperative adaptive cruise control enabled by vanet. Veh. Commun. 2(2), 110–123 (2015)

    Google Scholar 

  3. Balachandran, S., Muñoz, C., Consiglio, M., Feliú, M., Patel, A.: Independent configurable architecture for reliable operation of unmanned systems with distributed on-board services. In: Proceedings of the 37th Digital Avionics Systems Conference (DASC 2018) (2018)

    Google Scholar 

  4. Behrmann, G., et al.: UPPAAL 4.0. In: Proceedings of International Conference on Quantitative Evaluation of Systems, pp. 125–126 (2006)

    Google Scholar 

  5. Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic. Elsevier, New York (2006)

    Google Scholar 

  6. Burns, A.: How to verify a safe real-time system: the application of model checking and timed automata to the production cell case study. Real-Time Syst. 24(2), 135–151 (2003)

    Article  Google Scholar 

  7. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

    Article  Google Scholar 

  8. Cortier, V.: Verification of security protocols. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 5–13. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-93900-9_5

    Chapter  Google Scholar 

  9. Dennis, L.A., Farwer, B.: Gwendolen: a BDI language for verifiable agents. In: Proceedings of AISB 2008 Symposium Logic and the Simulation of Interaction and Reasoning, pp. 16–23 (2008)

    Google Scholar 

  10. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent programming languages. Autom. Softw. Eng. 19(1), 5–63 (2012)

    Article  Google Scholar 

  11. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_36

    Chapter  Google Scholar 

  12. Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal Logics: Theory and Applications. Elsevier, New York (2003)

    MATH  Google Scholar 

  13. Hallé, S., Chaib-draa, B.: Collaborative driving system using teamwork for platoon formations. In: Applications of Agent Technology in Traffic and Transportation, pp. 133–151. Birkhäuser, Basel (2005)

    Google Scholar 

  14. Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for proving safety of multi-lane traffic manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 404–419. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24559-6_28

    Chapter  Google Scholar 

  15. Hilscher, M., Schwammberger, M.: An abstract model for proving safety of autonomous urban traffic. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 274–292. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46750-4_16

    Chapter  MATH  Google Scholar 

  16. Hsu, A., Eskafi, F., Sachs, S., Varaija, P.: Protocol design for an automated highway system. Discret. Event Dyn. Syst. 2(1), 183–206 (1994)

    Google Scholar 

  17. Kamali, M., Dennis, L.A., McAree, O., Fisher, M., Veres, S.M.: Formal verification of autonomous vehicle platooning. Sci. Comput. Program. 148, 88–106 (2017)

    Article  Google Scholar 

  18. Konur, S., Fisher, M., Schewe, S.: Combined model checking for temporal, probabilistic, and real-time logics. Theor. Comput. Sci. 503, 61–88 (2013)

    Article  MathSciNet  Google Scholar 

  19. Lam, S., Katupitiya, J.: Cooperative autonomous platoon maneuvers on highways. In: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1152–1157 (2013)

    Google Scholar 

  20. Lincoln, N., Veres, S.M., Dennis, L.A., Fisher, M., Lisitsa, A.: An agent based framework for adaptive control and decision making of autonomous vehicles. In: Proceedings of IFAC Workshop on Adaptation and Learning in Control and Signal Processing (ALCOSP) (2010)

    Google Scholar 

  21. Linker, S.: Spatial reasoning about motorway traffic safety with Isabelle/HOL. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 34–49. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66845-1_3

    Chapter  Google Scholar 

  22. Misra, J., Chandy, K.M.: Proofs of networks of processes. IEEE Trans. Softw. Eng. SE–7(4), 417–426 (1981)

    Article  MathSciNet  Google Scholar 

  23. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer, A.: A component-based approach to hybrid systems safety verification. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 441–456. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0_28

    Chapter  Google Scholar 

  24. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14509-4

    Book  MATH  Google Scholar 

  25. Rashid, A., Siddique, U., Hasan, O.: Formal verification of platoon control strategies. In: Johnsen, E.B., Schaefer, I. (eds.) SEFM 2018. LNCS, vol. 10886, pp. 223–238. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92970-5_14

    Chapter  Google Scholar 

  26. Rinast, J., Schupp, S.: Static detection of zeno runs in UPPAAL networks based on synchronization matrices and two data-variable heuristics. In: Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 220–235. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33365-1_16

    Chapter  MATH  Google Scholar 

  27. Solyom, S., Coelingh, E.: Performance Limitations in vehicle platoon control. IEEE Intell. Transp. Syst. Mag. 5(4), 112–120 (2013)

    Article  Google Scholar 

  28. Tripakis, S.: Verifying progress in timed systems. In: Katoen, J.-P. (ed.) ARTS 1999. LNCS, vol. 1601, pp. 299–314. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48778-6_18

    Chapter  Google Scholar 

  29. Wooldridge, M.J.: Reasoning about Rational Agents. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Linker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamali, M., Linker, S., Fisher, M. (2019). Modular Verification of Vehicle Platooning with Respect to Decisions, Space and Time. In: Artho, C., Ölveczky, P. (eds) Formal Techniques for Safety-Critical Systems. FTSCS 2018. Communications in Computer and Information Science, vol 1008. Springer, Cham. https://doi.org/10.1007/978-3-030-12988-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12988-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12987-3

  • Online ISBN: 978-3-030-12988-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics