Skip to main content

Collaborative Thompson Sampling

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2018)

Abstract

Thompson sampling is one of the most effective strategies to balance exploration-exploitation trade-off. It has been applied in a variety of domains and achieved remarkable success. Thompson sampling makes decisions in a noisy but stationary environment by accumulating uncertain information over time to improve prediction accuracy. In highly dynamic domains, however, the environment undergoes frequent and unpredictable changes. Making decisions in such an environment should rely on current information. Therefore, standard Thompson sampling may perform poorly in these domains. Here we present a collaborative Thompson sampling algorithm to apply the exploration-exploitation strategy to highly dynamic settings. The algorithm takes collaborative effects into account by dynamically clustering users into groups, and the feedback of all users in the same group will help to estimate the expected reward in the current context to find the optimal choice. Incorporating collaborative effects into Thompson sampling allows to capture real-time changes of the environment and adjust decision making strategy accordingly. We compare our algorithm with standard Thompson sampling algorithms on two real-world datasets. Our algorithm shows accelerated convergence and improved prediction performance in collaborative environments. We also provide a regret analysis of our algorithm on a non-contextual model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, D., Long, B., Traupman, J., Xin, D., Zhang, L.: Laser: a scalable response prediction platform for online advertising. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, pp. 173–182. ACM (2014)

    Google Scholar 

  2. Agrawal, S., Goyal, N.: Analysis of Thompson sampling for the multi-armed bandit problem. In: Conference on Learning Theory, pp. 39.1–39.26 (2012)

    Google Scholar 

  3. Agrawal, S., Goyal, N.: Thompson sampling for contextual bandits with linear payoffs. In: International Conference on Machine Learning, pp. 127–135 (2013)

    Google Scholar 

  4. Banerjee, A.: On Bayesian bounds. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 81–88. ACM (2006)

    Google Scholar 

  5. Bresler, G., Chen, G.H., Shah, D.: A latent source model for online collaborative filtering. In: Advances in Neural Information Processing Systems, pp. 3347–3355 (2014)

    Google Scholar 

  6. Brodén, B., Hammar, M., Nilsson, B.J., Paraschakis, D.: Ensemble recommendations via Thompson sampling: an experimental study within e-Commerce. In: 23rd International Conference on Intelligent User Interfaces, pp. 19–29. ACM (2018)

    Google Scholar 

  7. Chapelle, O., Li, L.: An empirical evaluation of Thompson sampling. In: Advances in Neural Information Processing Systems, pp. 2249–2257 (2011)

    Google Scholar 

  8. Christakopoulou, K., Banerjee, A.: Learning to interact with users: a collaborative-bandit approach. In: Proceedings of the 2018 SIAM International Conference on Data Mining, pp. 612–620. SIAM (2018)

    Chapter  Google Scholar 

  9. Chu, W., Li, L., Reyzin, L., Schapire, R.: Contextual bandits with linear payoff functions. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 208–214 (2011)

    Google Scholar 

  10. Chu, W., et al.: A case study of behavior-driven conjoint analysis on Yahoo!: front page today module. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1097–1104. ACM (2009)

    Google Scholar 

  11. Ferreira, K., Simchi-Levi, D., Wang, H.: Online network revenue management using Thompson sampling (2017)

    Google Scholar 

  12. Glaze, C.M., Filipowicz, A.L., Kable, J.W., Balasubramanian, V., Gold, J.I.: A bias-variance trade-off governs individual differences in on-line learning in an unpredictable environment. Nat. Hum. Behav. 2(3), 213 (2018)

    Article  Google Scholar 

  13. Gopalan, A., Mannor, S.: Thompson sampling for learning parameterized Markov decision processes. In: Conference on Learning Theory, pp. 861–898 (2015)

    Google Scholar 

  14. Gopalan, A., Mannor, S., Mansour, Y.: Thompson sampling for complex online problems. In: International Conference on Machine Learning, pp. 100–108 (2014)

    Google Scholar 

  15. Graepel, T., Candela, J.Q., Borchert, T., Herbrich, R.: Web-scale Bayesian click-through rate prediction for sponsored search advertising in Microsoft’s Bing search engine. Omnipress (2010)

    Google Scholar 

  16. Johnson, C.C.: Logistic matrix factorization for implicit feedback data. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  17. Kaufmann, E., Korda, N., Munos, R.: Thompson sampling: an asymptotically optimal finite-time analysis. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds.) ALT 2012. LNCS (LNAI), vol. 7568, pp. 199–213. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34106-9_18

    Chapter  Google Scholar 

  18. Kawale, J., Bui, H.H., Kveton, B., Tran-Thanh, L., Chawla, S.: Efficient Thompson sampling for online matrix-factorization recommendation. In: Advances in Neural Information Processing Systems, pp. 1297–1305 (2015)

    Google Scholar 

  19. Lavancier, F., Rochet, P.: A general procedure to combine estimators. Comput. Stat. Data Anal. 94, 175–192 (2016)

    Article  MathSciNet  Google Scholar 

  20. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized news article recommendation. In: Proceedings of the 19th International Conference on World Wide Web, pp. 661–670. ACM (2010)

    Google Scholar 

  21. Li, S., Karatzoglou, A., Gentile, C.: Collaborative filtering bandits. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 539–548. ACM (2016)

    Google Scholar 

  22. Nguyen, T.T., Lauw, H.W.: Dynamic clustering of contextual multi-armed bandits. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp. 1959–1962. ACM (2014)

    Google Scholar 

  23. Ouyang, Y., Gagrani, M., Nayyar, A., Jain, R.: Learning unknown Markov decision processes: a Thompson sampling approach. In: Advances in Neural Information Processing Systems, pp. 1333–1342 (2017)

    Google Scholar 

  24. Russo, D.J., Van Roy, B., Kazerouni, A., Osband, I., Wen, Z., et al.: A tutorial on Thompson sampling. Found. Trends® in Mach. Learn. 11(1), 1–96 (2018)

    Article  Google Scholar 

  25. Schwartz, E.M., Bradlow, E.T., Fader, P.S.: Customer acquisition via display advertising using multi-armed bandit experiments. Mark. Sci. 36(4), 500–522 (2017)

    Article  Google Scholar 

  26. Scott, S.L.: A modern Bayesian look at the multi-armed bandit. Appl. Stoch. Models Bus. Ind. 26(6), 639–658 (2010)

    Article  MathSciNet  Google Scholar 

  27. Thompson, W.R.: On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25(3/4), 285–294 (1933)

    Article  Google Scholar 

  28. Wolfinger, R.: Laplace’s approximation for nonlinear mixed models. Biometrika 80(4), 791–795 (1993)

    Article  MathSciNet  Google Scholar 

  29. Wu, Q., Wang, H., Gu, Q., Wang, H.: Contextual bandits in a collaborative environment. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 529–538. ACM (2016)

    Google Scholar 

Download references

Acknowledgments

This paper is supported by the National Science Foundation of China under Grant 61472385 and Grant U1709217.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liusheng Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Z., Huang, L., Xu, H. (2019). Collaborative Thompson Sampling. In: Gao, H., Wang, X., Yin, Y., Iqbal, M. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 268. Springer, Cham. https://doi.org/10.1007/978-3-030-12981-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12981-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12980-4

  • Online ISBN: 978-3-030-12981-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics