Skip to main content

Detection of Mechanical Damages in Sawn Timber Using Convolutional Neural Networks

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2018)

Abstract

The quality control of timber products is vital for the sawmill industry pursuing more efficient production processes. This paper considers the automatic detection of mechanical damages in wooden board surfaces occurred during the sawing process. Due to the high variation in the appearance of the mechanical damages and the presence of several other surface defects on the boards, the detection task is challenging. In this paper, an efficient convolutional neural network based framework that can be trained with a limited amount of annotated training data is proposed. The framework includes a patch extraction step to produce multiple training samples from each damaged region in the board images, followed by the patch classification and damage localization steps. In the experiments, multiple network architectures were compared: the VGG-16 architecture achieved the best results with over 92% patch classification accuracy and it enabled accurate localization of the mechanical damages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features SURF. Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  2. Cha, Y.J., Choi, W., Büyüköztürk, O.: Deep learning-based crack damage detection using convolutional neural networks. Comput.-Aided Civ. Infrastruct. Eng. 32(5), 361–378 (2017)

    Article  Google Scholar 

  3. Donahue, J., et al.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: Proceedings of the 31st International Conference on Machine Learning, ICML, vol. 32, pp. 647–655. PMLR (2014)

    Google Scholar 

  4. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  5. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC 3(6), 610–621 (1973)

    Article  Google Scholar 

  6. Hashim, U., Hashim, S., Muda, A.: Automated vision inspection of timber surface defect: a review. Jurnal Teknologi 77(20), 127–135 (2015)

    Article  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, CVPR, pp. 770–778. IEEE (2016)

    Google Scholar 

  8. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd International Conference on Multimedia, pp. 675–678. ACM (2014)

    Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th Conference on Neural Information Processing Systems, NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  10. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the 7th International Conference on Computer Vision, ICCV, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  11. Nuutinen, Y., Väätäinen, K., Asikainen, A., Prinz, R., Heinonen, J.: Operational efficiency and damage to sawlogs by feed rollers of the harvester head. Silva Fennica 44(1), 121–139 (2010)

    Article  Google Scholar 

  12. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 29(1), 51–59 (1996)

    Article  Google Scholar 

  13. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  14. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, CVPR, pp. 779–788. IEEE (2016)

    Google Scholar 

  15. Ren, R., Hung, T., Tan, K.C.: A generic deep-learning-based approach for automated surface inspection. IEEE Trans. Cybern. 48(3), 929–940 (2018)

    Article  Google Scholar 

  16. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of the 28th Conference on Neural Information Processing Systems, NIPS, pp. 91–99 (2015)

    Google Scholar 

  17. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  18. Shustrov, D.: Species identification of wooden material using convolutional neural networks. Master’s thesis. Lappeenranta University of Technology, Finland (2018)

    Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of the International Conference on Learning Representations, ICLR (2014)

    Google Scholar 

  20. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1–9. IEEE (2015)

    Google Scholar 

  21. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, CVPR, pp. 2818–2826. IEEE (2016)

    Google Scholar 

  22. Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Trans. Syst. Man Cybern. 8(6), 460–473 (1978)

    Article  Google Scholar 

  23. Tong, H.L., Ng, H., Yap, T.V.T., Ahmad, W.S.H.M.W., Fauzi, M.F.A.: Evaluation of feature extraction and selection techniques for the classification of wood defect images. J. Eng. Appl. Sci. 12(3), 602–608 (2017)

    Google Scholar 

Download references

Acknowledgements

The research was carried out in the DigiSaw project (No. 2894/31/2017) funded by Business Finland. The authors would to thank FinScan Oy for providing the data for the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuomas Eerola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rudakov, N., Eerola, T., Lensu, L., Kälviäinen, H., Haario, H. (2019). Detection of Mechanical Damages in Sawn Timber Using Convolutional Neural Networks. In: Brox, T., Bruhn, A., Fritz, M. (eds) Pattern Recognition. GCPR 2018. Lecture Notes in Computer Science(), vol 11269. Springer, Cham. https://doi.org/10.1007/978-3-030-12939-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12939-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12938-5

  • Online ISBN: 978-3-030-12939-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics