Skip to main content

DeepKey: Towards End-to-End Physical Key Replication from a Single Photograph

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11269))

Included in the following conference series:

Abstract

This paper describes DeepKey, an end-to-end deep neural architecture capable of taking a digital RGB image of an ‘everyday’ scene containing a pin tumbler key (e.g. lying on a table or carpet) and fully automatically inferring a printable 3D key model. We report on the key detection performance and describe how candidates can be transformed into physical prints. We show an example opening a real-world lock. Our system is described in detail, providing a breakdown of all components including key detection, pose normalisation, bitting segmentation and 3D model inference. We provide an in-depth evaluation and conclude by reflecting on limitations, applications, potential security risks and societal impact. We contribute the DeepKey Datasets of 5, 300+ images covering a few test keys with bounding boxes, pose and unaligned mask data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    DeepKey Datasets can be requested via https://data.bris.ac.uk.

References

  1. Adelson, E.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid methods in image processing. RCA Eng. 29(4), 33–41 (1984)

    Google Scholar 

  2. Burgess, B., Wustrow, E., Halderman, J.A.: Replication prohibited: attacking restricted keyways with 3D-printing. In: WOOT (2015)

    Google Scholar 

  3. Dai, J., et al.: Deformable convolutional networks. CoRR abs/1703.06211 (2017). https://doi.org/10.1109/ICCV.2017.89, http://arxiv.org/abs/1703.06211

  4. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2012 (VOC 2012) Results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

  5. Girshick, R.B.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (2015). https://doi.org/10.1109/ICCV.2015.169

  6. Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR abs/1311.2524 (2013). https://doi.org/10.1109/CVPR.2014.81, http://arxiv.org/abs/1311.2524

  7. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017). https://doi.org/10.1109/ICCV.2017.322

  8. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. CoRR abs/1406.4729 (2014). https://doi.org/10.1109/TPAMI.2015.2389824, http://arxiv.org/abs/1406.4729

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  10. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: NIPS (2015)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  12. Laxton, B., Wang, K., Savage, S.: Reconsidering physical key secrecy: teleduplication via optical decoding. In: ACM Conference on Computer and Communications Security (2008). https://doi.org/10.1145/1455770.1455830

  13. Lin, T.Y., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944 (2017). https://doi.org/10.1109/CVPR.2017.106

  14. Lin, T., et al.: Microsoft COCO: common objects in context. CoRR abs/1405.0312 (2014). http://arxiv.org/abs/1405.0312

  15. Marius Kintel, C.W.: Openscad. http://www.blender.org/

  16. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. CoRR abs/1612.08242 (2016). http://arxiv.org/abs/1612.08242

  17. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2015). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  18. Schmidhuber, J.: Deep learning in neural networks: an overview. CoRR abs/1404.7828 (2014). https://doi.org/10.1016/j.neunet.2014.09.003, http://arxiv.org/abs/1404.7828

    Article  Google Scholar 

  19. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017). https://doi.org/10.1109/ICCV.2017.74

  20. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. CoRR abs/1312.6229 (2013)

    Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  22. Ultimaker BV: Ultimaker 2 plus technical specifications (2016). https://ultimaker.com/en/products/ultimaker-2-plus/specifications

  23. Univeristy of Bristol Advanced Computing Research Centre: Blue crystal phase 4 (2017). https://www.acrc.bris.ac.uk/acrc/phase4.htm

  24. Zakka, K.: Spatial transformer network implementation, January 2017. https://github.com/kevinzakka/spatial-transformer-network

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rory Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smith, R., Burghardt, T. (2019). DeepKey: Towards End-to-End Physical Key Replication from a Single Photograph. In: Brox, T., Bruhn, A., Fritz, M. (eds) Pattern Recognition. GCPR 2018. Lecture Notes in Computer Science(), vol 11269. Springer, Cham. https://doi.org/10.1007/978-3-030-12939-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12939-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12938-5

  • Online ISBN: 978-3-030-12939-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics