Skip to main content

Metric-Driven Learning of Correspondence Weighting for 2-D/3-D Image Registration

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2018)

Abstract

Registration of pre-operative 3-D volumes to intra-operative 2-D X-ray images is important in minimally invasive medical procedures. Rigid registration can be performed by estimating a global rigid motion that optimizes the alignment of local correspondences. However, inaccurate correspondences challenge the registration performance. To minimize their influence, we estimate optimal weights for correspondences using PointNet. We train the network directly with the criterion to minimize the registration error. We propose an objective function which includes point-to-plane correspondence-based motion estimation and projection error computation, thereby enabling the learning of a weighting strategy that optimally fits the underlying formulation of the registration task in an end-to-end fashion. For single-vertebra registration, we achieve an accuracy of \(0.74\pm 0.26\) mm and highly improved robustness. The success rate is increased from 79.3% to 94.3% and the capture range from 3 mm to 13 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  2. Elliott, D.L.: A better activation function for artificial neural networks. Technical report (1993)

    Google Scholar 

  3. Feng, Y., Huang, X., Shi, L., Yang, Y., Suykens, J.A.: Learning with the maximum correntropy criterion induced losses for regression. J. Mach. Learn. Res. 16, 993–1034 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn, p. 200. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  5. van de Kraats, E.B., Penney, G.P., Tomaževič, D., van Walsum, T., Niessen, W.J.: Standardized evaluation methodology for 2-D-3-D registration. IEEE Trans. Med. imaging 24(9), 1177–1189 (2005)

    Article  Google Scholar 

  6. Kubias, A., Deinzer, F., Feldmann, T., Paulus, D., Schreiber, B., Brunner, T.: 2D/3D image registration on the GPU. Pattern Recogn. Image Anal. 18(3), 381–389 (2008)

    Article  Google Scholar 

  7. Maier, A., et al.: Precision learning: towards use of known operators in neural networks. arXiv preprint arXiv:1712.00374v3 (2017)

  8. Markelj, P., Tomaževič, D., Likar, B., Pernuš, F.: A review of 3D/2D registration methods for image-guided interventions. Med. Image Anal. 16(3), 642–661 (2012)

    Article  Google Scholar 

  9. Miao, S., et al.: Dilated FCN for multi-agent 2D/3D medical image registration. In: AAAI Conference on Artificial Intelligence (AAAI), pp. 4694–4701 (2018)

    Google Scholar 

  10. Mitrović, U., Špiclin, Ž., Likar, B., Pernuš, F.: 3D–2D registration of cerebral angiograms: a method and evaluation on clinical images. IEEE Trans. Med. Imaging 32(8), 1550–1563 (2013)

    Article  Google Scholar 

  11. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 77–85 (2017)

    Google Scholar 

  12. Schaffert, R., Wang, J., Fischer, P., Borsdorf, A., Maier, A.: Multi-view depth-aware rigid 2-D/3-D registration. In: IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) (2017)

    Google Scholar 

  13. Schmid, J., Chênes, C.: Segmentation of X-ray images by 3D-2D registration based on multibody physics. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9004, pp. 674–687. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16808-1_45

    Chapter  Google Scholar 

  14. Wang, J., Borsdorf, A., Heigl, B., Köhler, T., Hornegger, J.: Gradient-based differential approach for 3-D motion compensation in interventional 2-D/3-D image fusion. In: International Conference on 3D Vision (3DV), pp. 293–300 (2014)

    Google Scholar 

  15. Wang, J., et al.: Dynamic 2-D/3-D rigid registration framework using point-to-plane correspondence model. IEEE Trans. Med. Imaging 36(9), 1939–1954 (2017)

    Article  Google Scholar 

  16. Yi, K.M., Trulls, E., Ono, Y., Lepetit, V., Salzmann, M., Fua, P.: Learning to find good correspondences. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2666–2674 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Schaffert .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 11977 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schaffert, R., Wang, J., Fischer, P., Borsdorf, A., Maier, A. (2019). Metric-Driven Learning of Correspondence Weighting for 2-D/3-D Image Registration. In: Brox, T., Bruhn, A., Fritz, M. (eds) Pattern Recognition. GCPR 2018. Lecture Notes in Computer Science(), vol 11269. Springer, Cham. https://doi.org/10.1007/978-3-030-12939-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12939-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12938-5

  • Online ISBN: 978-3-030-12939-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics