Skip to main content

Alginate: Pharmaceutical and Medical Applications

  • Chapter
  • First Online:
Extracellular Sugar-Based Biopolymers Matrices

Abstract

Due to their outstanding properties in terms of mild gelation conditions and simple functionalization, biocompatibility, low toxicity, biodegradability, non-antigenicity and chelating ability, as well as relatively low cost, alginates have been widely used in a variety of biomedical applications including tissue engineering and drug delivery systems. Smart alginate hydrogels for on-demand drug release in response to environmental stimuli and 3D bioprinting will play an important role in the future. These and the introduction of appropriate cell interactive features will be crucial for many tissue engineering applications. The focus of the present chapter is to highlight the great potential of the alginates as biomaterial for biomedical applications and to discuss the role that alginate-based materials are likely to play in biomedical applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelghany S, Alkhawaldeh M, AlKhatib HS (2017) Carrageenan-stabilized chitosan alginate nanoparticles loaded with ethionamide for the treatment of tuberculosis. J Drug Deliv Sci Technol 39:442–449

    Article  CAS  Google Scholar 

  • Abdellatif A, El Hamd M, Saleh K (2016) A formulation, optimization and evaluation of controlled released alginate beads loaded-flurbiprofen. J Nanomed Nanotechnol 7:357–364

    Google Scholar 

  • Agüero L, Zaldivar-Silva D, Peña L, Dias ML (2017) Alginate microparticles as oral colon drug delivery device: a review. Carbohydr Polym 168:32–43

    Article  PubMed  CAS  Google Scholar 

  • Al Dalaty A, Karam A, Najlah M, Alany RG, Khoder M (2016) Effect of non-cross-linked calcium on characteristics, swelling behaviour, drug release and mucoadhesiveness of calcium alginate beads. Carbohydr Polym 140:163–170

    Article  CAS  PubMed  Google Scholar 

  • Alban S, Schauerte A, Franz G (2002) Anticoagulant sulfated polysaccharides: Part I. Synthesis and structure–activity relationships of new pullulan sulfates. Carbohydr Polym 47:267–276

    Article  CAS  Google Scholar 

  • Alemdar N (2016) Fabrication of a novel bone ash-reinforced gelatin/alginate/hyaluronic acid composite film for controlled drug delivery. Carbohydr Polym 151:1019–1026

    Article  CAS  PubMed  Google Scholar 

  • Al-Otoum R, Abulateefeh S, Taha M (2014) Preparation of novel ionotropically crosslinked beads based on alginate-terephthalic acid composites as potential controlled release matrices. Pharmazie 69:10–18

    CAS  PubMed  Google Scholar 

  • Alsharabasy AM, Moghannem SA, El-Mazny WN (2016) Physical preparation of alginate/chitosan polyelectrolyte complexes for biomedical applications. J Biomater Appl 30:1071–1079

    Article  CAS  PubMed  Google Scholar 

  • Amiri M, Salavati-Niasari M, Pardakhty A, Ahmadi M, Akbari A (2017) Caffeine: a novel green precursor for synthesis of magnetic CoFe2O4 nanoparticles and pH-sensitive magnetic alginate beads for drug delivery. Mater Sci Eng C 76:1085–1093

    Article  CAS  Google Scholar 

  • Anal AK, Stevens WF (2005) Chitosan–alginate multilayer beads for controlled release of ampicillin. Int J Pharm 290:45–54

    Article  CAS  PubMed  Google Scholar 

  • Andersen T, Auk-Emblem P, Dornish M (2015) 3D cell culture in alginate hydrogels. Microarrays 4:133–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson T, Strand BL, Formo K, Alsberg E, Christensen B (2011) Alginates as biomaterials in tissue engineering. In: Rauter AP (ed) Carbohydrate chemistry: chemical and biological approaches, vol 37. Royal Society of Chemistry, London, pp 227–258

    Chapter  Google Scholar 

  • Angspatt A, Tanvatcharaphan P, Channasanon S, Tanodekaew S, Chokrungvaranont P, Sirimaharaj W (2010) Comparative study between chitin/polyacrylic acid (PAA) dressing, lipido-colloid absorbent dressing and alginate wound dressing: a pilot study in the treatment of partial thickness wound. J Med Assoc Thail 93:694–697

    Google Scholar 

  • Arlov Ø, Skjåk-Bræk G (2017) Sulfated alginates as heparin analogues: a review of chemical and functional properties. Molecules 22:71–75

    Article  CAS  Google Scholar 

  • Arockianathan PM, Sekar S, Sankar S, Kumaran B, Sastry T (2012) Evaluation of biocomposite films containing alginate and sago starch impregnated with silver nano particles. Carbohydr Polym 90:717–724

    Article  CAS  Google Scholar 

  • Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633

    Article  CAS  PubMed  Google Scholar 

  • Ausili E, Paolucci V, Triarico S et al (2013) Treatment of pressure sores in spina bifida patients with calcium alginate and foam dressings. Eur Rev Med Pharmacol Sci 17:1642–1647

    CAS  PubMed  Google Scholar 

  • Awasthi R, Kulkarni GT (2014) Development of novel gastroretentive drug delivery system of gliclazide: hollow beads. Drug Dev Ind Pharm 40:398–408

    Article  CAS  PubMed  Google Scholar 

  • Bagheri L, Madadlou A, Yarmand M, Mousavi ME (2014) Spray-dried alginate microparticles carrying caffeine-loaded and potentially bioactive nanoparticles. Food Res Int 62:1113–1119

    Article  CAS  Google Scholar 

  • Bai X, Zheng H, Fang R et al (2011) Fabrication of engineered heart tissue grafts from alginate/collagen barium composite microbeads. Biomed Mater 6(4):045002–045011. https://doi.org/10.1088/1748-6041/6/4/045002

    Article  CAS  PubMed  Google Scholar 

  • Balakrishnan B, Jayakrishnan A (2005) Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials 26:3941–3951

    Article  CAS  PubMed  Google Scholar 

  • Balakrishnan B, Mohanty M, Umashankar P, Jayakrishnan A (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26:6335–6342

    Article  CAS  PubMed  Google Scholar 

  • Bale S, Baker N, Crook H, Rayman A, Rayman G, Harding K (2001) Exploring the use of an alginate dressing for diabetic foot ulcers. J Wound Care 10:81–84

    Article  CAS  PubMed  Google Scholar 

  • Beherei HH, Shaltout AA, Mobrouk M, Abdelwahed NAM, Das DB (2018) Influence of niobium pentoxide particulates on the properties of brushite/gelatin/alginate membranes. J Pharm Sci 107:1361–1371

    Article  CAS  PubMed  Google Scholar 

  • Benavides S, Villalobos-Carvajal R, Reyes J (2012) Physical, mechanical and antibacterial properties of alginate film: effect of the crosslinking degree and oregano essential oil concentration. J Food Eng 110:232–239

    Article  CAS  Google Scholar 

  • Bidarra SJ, Barrias CC, Granja PL (2014) Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 10:1646–1662

    Article  CAS  PubMed  Google Scholar 

  • Boissière M, Allouche J, Chanéac C et al (2007) Potentialities of silica/alginate nanoparticles as hybrid magnetic carriers. Int J Pharm 344:128–134

    Article  PubMed  CAS  Google Scholar 

  • Bouhadir KH, Lee KY, Alsberg E, Damm KL, Anderson KW, Mooney DJ (2001) Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol Prog 17:945–950

    Article  CAS  PubMed  Google Scholar 

  • Bubenikova S, Stancu I-C, Kalinovska L et al (2012) Chemoselective cross-linking of alginate with thiol-terminated peptides for tissue engineering applications. Carbohydr Polym 88:1239–1250

    Article  CAS  Google Scholar 

  • Buwalda SJ, Vermonden T, Hennink WE (2017) Hydrogels for therapeutic delivery: current developments and future directions. Biomacromolecules 18:316–330

    Article  CAS  PubMed  Google Scholar 

  • Caetano GF, Frade MAC, Andrade TAM et al (2015) Chitosan-alginate membranes accelerate wound healing. J Biomed Mater Res B Appl Biomater 103:1013–1022

    Article  CAS  PubMed  Google Scholar 

  • Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267

    Article  CAS  Google Scholar 

  • Cardoso MJ, Costa RR, Mano JF (2016) Marine origin polysaccharides in drug delivery systems. Mar Drugs 14:34–60

    Article  PubMed Central  CAS  Google Scholar 

  • Carella S, Maruccia M, Fino P, Onesti MG (2013) An atypical case of Henoch-Shönlein purpura in a young patient: treatment of the skin lesions with hyaluronic acid-based dressings. In Vivo 27:147–151

    PubMed  Google Scholar 

  • Catanzano O, D’Esposito V, Formisano P, Boateng JS, Quaglia F (2018) Composite alginate-hyaluronan sponges for the delivery of tranexamic acid in postextractive alveolar wounds. J Pharm Sci 107:654–661

    Article  CAS  PubMed  Google Scholar 

  • Chaluvadi S, Hotchkiss A Jr, Call J et al (2012) Protection of probiotic bacteria in a synbiotic matrix following aerobic storage at 4 C. Benefic Microbes 3:175–187

    Article  CAS  Google Scholar 

  • Chamberlain N, Cunningham G, Speakman J (1946) Alginic acid diacetate. Nature 158:553–554

    Article  CAS  Google Scholar 

  • Chang AA, Reuther MS, Briggs KK et al (2012) In vivo implantation of tissue-engineered human nasal septal neocartilage constructs: a pilot study. Otolaryngol Head Neck Surg 146:46–52

    Article  PubMed  Google Scholar 

  • Chellini E, Lavorini F, Campi G, Mannini C, Fontana GA (2015) Effect of an anti-reflux medical device in the control of deflation cough: a placebo-controlled comparative study with an antacid drug in chronic coughers. Pulm Pharmacol Ther 33:11–14

    Article  CAS  PubMed  Google Scholar 

  • Chen S-C, Wu Y-C, Mi F-L, Lin Y-H, Yu L-C, Sung H-W (2004) A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release 96:285–300

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Ling Y, Cao C, Li X, Chen X, Wang X (2016) Chitosan derivatives/reduced graphene oxide/alginate beads for small-molecule drug delivery. Mater Sci Eng C 69:1222–1228

    Article  CAS  Google Scholar 

  • Chen S, Cui S, Hu J, Zhou Y, Liu Y (2017) Pectinate nanofiber mat with high absorbency and antibacterial activity: a potential superior wound dressing to alginate and chitosan nanofiber mats. Carbohydr Polym 174:591–600

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Jun Y, Qin J, Lee S-H (2017) Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials 114:121–143

    Article  CAS  PubMed  Google Scholar 

  • Chiew CSC, Poh PE, Pasbakhsh P, Tey BT, Yeoh HK, Chan ES (2014) Physicochemical characterization of halloysite/alginate bionanocomposite hydrogel. Appl Clay Sci 101:444–454

    Article  CAS  Google Scholar 

  • Ching SH, Bansal N, Bhandari B (2017) Alginate gel particles–a review of production techniques and physical properties. Crit Rev Food Sci Nutr 57:1133–1152

    Article  CAS  PubMed  Google Scholar 

  • Chirani N, Yahia L, Gritsch L, Motta FL, Chirani S, Fare S (2015) History and applications of hydrogels. J Biomed Sci 4:13–35

    Google Scholar 

  • Choudhary S, Reck JM, Carr AJ, Bhatia SR (2018) Hydrophobically modified alginate for extended release of pharmaceuticals. Polym Adv Technol 29:198–204

    Article  CAS  Google Scholar 

  • Coleman RJ, Lawrie G, Lambert LK, Whittaker M, Jack KS, Grøndahl L (2011) Phosphorylation of alginate: synthesis, characterization, and evaluation of in vitro mineralization capacity. Biomacromolecules 12:889–897

    Article  CAS  PubMed  Google Scholar 

  • Coşkun G, Karaca E, Ozyurtlu M, Özbek S, Yermezler A, Çavuşoğlu İ (2014) Histological evaluation of wound healing performance of electrospun poly (vinyl alcohol)/sodium alginate as wound dressing in vivo. Biomed Mater Eng 24:1527–1536

    PubMed  Google Scholar 

  • Costa MJ, Marques AM, Pastrana LM, Teixeira JA, Sillankorva SM, Cerqueira MA (2018) Physicochemical properties of alginate-based films: effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food Hydrocoll 81:442–448

    Article  CAS  Google Scholar 

  • d’Ayala GG, Malinconico M, Laurienzo P (2008) Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules 13:2069–2106

    Article  PubMed  CAS  Google Scholar 

  • da Cunha CB, Klumpers DD, Li WA et al (2014) Influence of the stiffness of three-dimensional alginate/collagen-I interpenetrating networks on fibroblast biology. Biomaterials 35:8927–8936

    Article  CAS  Google Scholar 

  • da Silva TL, Vidart JMM, da Silva MGC, Gimenes ML, Vieira MGA (2017) Alginate and sericin: environmental and pharmaceutical applications. In: Shalaby EA (ed) Biological activities and application of marine polysaccharides. InTech, London, pp 57–85

    Google Scholar 

  • Dahlmann J, Krause A, Möller L et al (2013) Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering. Biomaterials 34:940–951

    Article  CAS  PubMed  Google Scholar 

  • Dai H, Ou S, Huang Y, Liu Z, Huang H (2017) Enhanced swelling and multiple-responsive properties of gelatin/sodium alginate hydrogels by the addition of carboxymethyl cellulose isolated from pineapple peel. Cellulose 25:593–606

    Article  CAS  Google Scholar 

  • Dalheim MØ, Vanacker J, Najmi MA, Aachmann FL, Strand BL, Christensen BE (2016) Efficient functionalization of alginate biomaterials. Biomaterials 80:146–156

    Article  CAS  PubMed  Google Scholar 

  • Das S, Pati F, Choi Y-J et al (2015) Bioprintable, cell-laden silk fibroin–gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater 11:233–246

    Article  CAS  PubMed  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  PubMed  Google Scholar 

  • De la Riva B, Nowak C, Sánchez E et al (2009) VEGF-controlled release within a bone defect from alginate/chitosan/PLA-H scaffolds. Eur J Pharm Biopharm 73:50–58

    Article  PubMed  CAS  Google Scholar 

  • de Moraes MA, Beppu MM (2013) Biocomposite membranes of sodium alginate and silk fibroin fibers for biomedical applications. J Appl Polym Sci 130:3451–3457

    Article  CAS  Google Scholar 

  • De Ruigh A, Roman S, Chen J, Pandolfino JE, Kahrilas PJ (2014) Gaviscon double action liquid (antacid & alginate) is more effective than antacid in controlling post-prandial oesophageal acid exposure in GERD patients: a double-blind crossover study. Aliment Pharmacol Ther 40:531–537

    PubMed  PubMed Central  Google Scholar 

  • Dettmar PW, Strugala V, Richardson JC (2011) The key role alginates play in health. Food Hydrocoll 25:263–266

    Article  CAS  Google Scholar 

  • Dhivya S, Padma VV, Santhini E (2015) Wound dressings–a review. Biomedicine 5:24–28

    Article  Google Scholar 

  • Donati I, Holtan S, Mørch YA, Borgogna M, Dentini M, Skjåk-Bræk G (2005) New hypothesis on the role of alternating sequences in calcium−alginate gels. Biomacromolecules 6:1031–1040

    Article  CAS  PubMed  Google Scholar 

  • Draget KI, Taylor C (2011) Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocoll 25:251–256

    Article  CAS  Google Scholar 

  • Draget KI, Smidsrød O, Skjåk-Bræk G (2005) Alginates from algae. In: Steinbüchel A (ed) Biopolymers online. Wiley, New York, pp 215–224

    Google Scholar 

  • Duan B, Hockaday LA, Kang KH, Butcher JT (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101:1255–1264

    Article  PubMed  CAS  Google Scholar 

  • Duarte Campos DF, Blaeser A, Korsten A et al (2014) The stiffness and structure of three-dimensional printed hydrogels direct the differentiation of mesenchymal stromal cells toward adipogenic and osteogenic lineages. J Tissue Eng Part A 21:740–756

    Article  CAS  Google Scholar 

  • Duncan G, Andrews S, McCulloch W (2002) Issues in clinical practice: dressings. Prim Intention Aust J Wound Manage 10:29–35

    Google Scholar 

  • Egorov AA, Fedotov AY, Mironov AV, Komlev VS, Popov VK, Zobkov YV (2016) 3D printing of mineral–polymer bone substitutes based on sodium alginate and calcium phosphate. Beilstein J Nanotechnol 21:1794–1799

    Article  CAS  Google Scholar 

  • Eiselt P, Lee KY, Mooney DJ (1999) Rigidity of two-component hydrogels prepared from alginate and poly (ethylene glycol)− diamines. Macromolecules 32:5561–5566

    Article  CAS  Google Scholar 

  • Esposito M, Grusovin MG, Coulthard P, Worthington HV (2009) Enamel matrix derivative (Emdogain) for periodontal tissue regeneration in intrabony defects. A Cochrane systematic review. Eur J Oral Implantol 2:247–266

    PubMed  Google Scholar 

  • Falkeborg M, Cheong L-Z, Gianfico C et al (2014) Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation. Food Chem 164:185–194

    Article  CAS  PubMed  Google Scholar 

  • Fan L, Jiang L, Xu Y et al (2011) Synthesis and anticoagulant activity of sodium alginate sulfates. Carbohydr Polym 83:1797–1803

    Article  CAS  Google Scholar 

  • FDA USFaDA (2016) Generally recognized as safe (Internet) In. http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/SCOGS/ucm260857.htm.2016

  • Focaroli S, Teti G, Salvatore V, Orienti I, Falconi M (2016) Calcium/cobalt alginate beads as functional scaffolds for cartilage tissue engineering. Stem Cells Int 2016:2030478–2030489. https://doi.org/10.1155/2016/2030478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin MJ, Ohman DE (1993) Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation. J Bacteriol 175:5057–5065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin MJ, Ohman DE (2002) Mutant analysis and cellular localization of the AlgI, AlgJ, and AlgF proteins required for O acetylation of alginate in Pseudomonas aeruginosa. J Bacteriol 184:3000–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin MJ, Douthit SA, McClure MA (2004) Evidence that the algI/algJ gene cassette, required for O acetylation of Pseudomonas aeruginosa alginate, evolved by lateral gene transfer. J Bacteriol 186:4759–4773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman I, Kedem A, Cohen S (2008) The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials 29:3260–3268

    Article  CAS  PubMed  Google Scholar 

  • Fu R, Li C, Yu C et al (2016) A novel electrospun membrane based on moxifloxacin hydrochloride/poly (vinyl alcohol)/sodium alginate for antibacterial wound dressings in practical application. Drug Deliv 23:818–829

    Article  CAS  Google Scholar 

  • Gabbai-Armelin P, Cardoso DA, Zanotto E et al (2014) Injectable composites based on biosilicate® and alginate: handling and in vitro characterization. RSC Adv 4:45778–45785

    Article  CAS  Google Scholar 

  • Gainza G, Aguirre JJ, Pedraz JL, Hernández RM, Igartua M (2013) rhEGF-loaded PLGA-Alginate microspheres enhance the healing of full-thickness excisional wounds in diabetised Wistar rats. Eur J Pharm Sci 50:243–252

    Article  CAS  PubMed  Google Scholar 

  • Gama CI, Tully SE, Sotogaku N et al (2006) Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nat Chem Biol 2:467–473

    Article  CAS  PubMed  Google Scholar 

  • Gamboa A, Araujo V, Caro N, Gotteland M, Abugoch L, Tapia C (2015) Spray freeze-drying as an alternative to the ionic gelation method to produce chitosan and alginate nano-particles targeted to the colon. J Pharm Sci 104:4373–4385

    Article  CAS  PubMed  Google Scholar 

  • García-Astrain C, Avérous L (2018) Synthesis and evaluation of functional alginate hydrogels based on click chemistry for drug delivery applications. Carbohydr Polym 190:271–280

    Article  PubMed  CAS  Google Scholar 

  • Gåserød O, Smidsrød O, Skjåk-Bræk G (1998) Microcapsules of alginate-chitosan–I: a quantitative study of the interaction between alginate and chitosan. Biomaterials 19:1815–1825

    Article  PubMed  Google Scholar 

  • George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan – a review. J Control Release 114:1–14

    Article  CAS  PubMed  Google Scholar 

  • George L, Bavya MC, Rohan KV, Srivastava R (2017) A therapeutic polyelectrolyte–vitamin C nanoparticulate system in polyvinyl alcohol–alginate hydrogel: an approach to treat skin and soft tissue infections caused by Staphylococcus aureus. Colloids Surf B: Biointerfaces 160:315–324

    Article  CAS  PubMed  Google Scholar 

  • Godugu C, Singh M (2016) AlgiMatrix™-based 3D cell culture system as an in vitro tumor model: an important tool in cancer research. In: Strano S (ed) Cancer chemoprevention. Springer, New York, pp 117–128

    Chapter  Google Scholar 

  • Godugu C, Patel AR, Desai U, Andey T, Sams A, Singh M (2013) AlgiMatrix based 3D cell culture system as an in-vitro tumor model for anticancer studies. PLoS One 8(1):e53708–e53720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh CH, Heng PWS, Chan LW (2012) Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr Polym 88:1–12

    Article  CAS  Google Scholar 

  • Golafshan N, Rezahasani R, Tarkesh Esfahani M, Kharaziha M, Khorasani SN (2017) Nanohybrid hydrogels of laponite: PVA-alginate as a potential wound healing material. Carbohydr Polym 176:392–401

    Article  CAS  PubMed  Google Scholar 

  • Gong R, Li C, Zhu S, Zhang Y, Du Y, Jiang J (2011) A novel pH-sensitive hydrogel based on dual crosslinked alginate/N-α-glutaric acid chitosan for oral delivery of protein. Carbohydr Polym 85:869–874

    Article  CAS  Google Scholar 

  • Grant GT, Morris ER, Rees DA, Smith PJ, Thom D (1973) Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett 32:195–198

    Article  CAS  Google Scholar 

  • Gregurec D, Wang G, Pires RH et al (2016) Bioinspired titanium coatings: self-assembly of collagen–alginate films for enhanced osseointegration. J Mater Chem B 4:1978–1986

    Article  CAS  PubMed  Google Scholar 

  • Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR (2018) Bioinks for 3D bioprinting: an overview. Biomater Sci 6:915–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Monica Giusti M, Kaletunç G (2018) Encapsulation of purple corn and blueberry extracts in alginate-pectin hydrogel particles: impact of processing and storage parameters on encapsulation efficiency. Food Res Int 107:414–422

    Article  CAS  PubMed  Google Scholar 

  • Gurikov P, Smirnova I (2018) Non-conventional methods for gelation of alginate. Gels 4:14–28

    Article  PubMed Central  CAS  Google Scholar 

  • Hajiali H, Summa M, Russo D et al (2016) Alginate-lavender nanofibers with antibacterial and anti-inflammatory activity to effectively promote burn healing. J Mater Chem B 4:1686–1695

    Article  CAS  PubMed  Google Scholar 

  • Hajská M, Dragúňová J, Koller J (2017) Cytotoxicity testing of burn wound dressings: first results. Cell Tissue Bank 18:143–151

    Article  PubMed  CAS  Google Scholar 

  • Hanga MP, Holdich RG (2014) Membrane emulsification for the production of uniform poly-N-isopropylacrylamide-coated alginate particles using internal gelation. Chem Eng Res Des 92:1664–1673

    Article  CAS  Google Scholar 

  • Hasan A, Khattab A, Islam MA et al (2015) Injectable hydrogels for cardiac tissue repair after myocardial infarction. Adv Sci 2(11):1500122–1500140. https://doi.org/10.1002/advs.201500122

    Article  CAS  Google Scholar 

  • Hay ID, Ur Rehman Z, Ghafoor A, Rehm BH (2010) Bacterial biosynthesis of alginates. J Chem Technol Biotechnol 85:752–759

    Article  CAS  Google Scholar 

  • Hillberg AL, Kathirgamanathan K, Lam JB, Law LY, Garkavenko O, Elliott RB (2013) Improving alginate-poly-L-ornithine-alginate capsule biocompatibility through genipin crosslinking. J Biomed Mater Res B Appl Biomater 101:258–268

    Article  PubMed  CAS  Google Scholar 

  • Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8(3):032002–032010. https://doi.org/10.1088/1758-5090/8/3/032002

    Article  CAS  PubMed  Google Scholar 

  • Horch RE, Weigand A, Wajant H, Groll J, Boccaccini AR, Arkudas A (2018) Biofabrikation–neue Ansätze für den artifiziellen Gewebeersatz. In: Giunta M (ed) Handchirurgie·Mikrochirurgie·Plastische Chirurgie 50:93–100

    Google Scholar 

  • Hosseini SM, Hosseini H, Mohammadifar MA et al (2014) Preparation and characterization of alginate and alginate-resistant starch microparticles containing nisin. Carbohydr Polym 103:573–580

    Article  CAS  PubMed  Google Scholar 

  • Huynh UT, Lerbret A, Neiers F, Chambin O, Assifaoui A (2016) Binding of divalent cations to polygalacturonate: a mechanism driven by the hydration water. J Phys Chem B 120:1021–1032

    Article  CAS  PubMed  Google Scholar 

  • Irving S, Gillespie L, Richardson R, Rowe D, Fallon J, Wise A (2014) Electroacoustic stimulation: now and into the future. Biomed Res Int 2014:350504–350521. https://doi.org/10.1155/2014/350504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Işıklan N, Küçükbalcı G (2012) Microwave-induced synthesis of alginate–graft-poly (N-isopropylacrylamide) and drug release properties of dual pH-and temperature-responsive beads. Eur J Pharm Biopharm 82:316–331

    Article  PubMed  CAS  Google Scholar 

  • Istenič K, Balanč BD, Djordjević VB et al (2015) Encapsulation of resveratrol into Ca-alginate submicron particles. J Food Eng 167:196–203

    Article  CAS  Google Scholar 

  • Jaikumar D, Sajesh K, Soumya S et al (2015) Injectable alginate-O-carboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering. Int J Biol Macromol 74:318–326

    Article  CAS  PubMed  Google Scholar 

  • Jain D, Bar-Shalom D (2014) Alginate drug delivery systems: application in context of pharmaceutical and biomedical research. Drug Dev Ind Pharm 40:1576–1584

    Article  CAS  PubMed  Google Scholar 

  • Jakaria M, Zaman R, Parvez M et al (2015) Comparative study among the different formulation of antacid tablets by using acid-base neutralization reaction. Glob J Pharmacol 9:278–281

    CAS  Google Scholar 

  • Jeon O, Bouhadir KH, Mansour JM, Alsberg E (2009) Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 30:2724–2734

    Article  CAS  PubMed  Google Scholar 

  • Joddar B, Garcia E, Casas A, Stewart CM (2016) Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies. Sci Rep 6:32456–32467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jovanović Ž, Stojkovska J, Obradović B, Mišković-Stanković V (2012) Alginate hydrogel microbeads incorporated with Ag nanoparticles obtained by electrochemical method. Mater Chem Phys 133:182–189

    Article  CAS  Google Scholar 

  • Kamoun EA, Kenawy E-RS, Tamer TM, El-Meligy MA, Eldin MSM (2015) Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation. Arab J Chem 8:38–47

    Article  CAS  Google Scholar 

  • Kanczler JM, Ginty PJ, White L et al (2010) The effect of the delivery of vascular endothelial growth factor and bone morphogenic protein-2 to osteoprogenitor cell populations on bone formation. Biomaterials 31:1242–1250

    Article  CAS  PubMed  Google Scholar 

  • Kavoosi G, Derakhshan M, Salehi M, Rahmati L (2018) Microencapsulation of zataria essential oil in agar, alginate and carrageenan. Innov Food Sci Emerg Technol 45:418–425

    Article  CAS  Google Scholar 

  • Kaygusuz H, Torlak E, Akın-Evingür G, Özen İ, von Klitzing R, Erim FB (2017) Antimicrobial cerium ion-chitosan crosslinked alginate biopolymer films: a novel and potential wound dressing. Int J Biol Macromol 105:1161–1165

    Article  CAS  PubMed  Google Scholar 

  • Kessler M, Esser E, Groll J, Tessmar J (2016) Bilateral PLA/alginate membranes for the prevention of postsurgical adhesions. J Biomed Mater Res B Appl Biomater 104:1563–1570

    Article  CAS  PubMed  Google Scholar 

  • Kingsley D, Dias A, Chrisey D, Corr D (2013) Single-step laser-based fabrication and patterning of cell-encapsulated alginate microbeads. Biofabrication 5(4):045006–045027. https://doi.org/10.1088/1758-5082/5/4/045006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knill C, Kennedy J, Mistry J et al (2004) Alginate fibres modified with unhydrolysed and hydrolysed chitosans for wound dressings. Carbohydr Polym 55:65–76

    Article  CAS  Google Scholar 

  • Koehler J, Wallmeyer L, Hedtrich S, Goepferich AM, Brandl FP (2017) pH-modulating poly (ethylene glycol)/alginate hydrogel dressings for the treatment of chronic wounds. Macromol Biosci 17:1600369–1600370

    Article  CAS  Google Scholar 

  • Kong H-J, Lee KY, Mooney DJ (2002) Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration. Polym J 43:6239–6246

    Article  CAS  Google Scholar 

  • Kong HJ, Smith MK, Mooney DJ (2003) Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials 24:4023–4029

    Article  CAS  PubMed  Google Scholar 

  • Kong HJ, Alsberg E, Kaigler D, Lee KY, Mooney DJ (2004) Controlling degradation of hydrogels via the size of crosslinked junctions. Adv Mater 16:1917–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopeček J (2002) Polymer chemistry: swell gels. Nature 417:388–391

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Kumar A (2017) Development and characterization of tripolymeric and bipolymeric composite films using glyoxal as a potent crosslinker for biomedical application. Mater Sci Eng C 73:333–339

    Article  CAS  Google Scholar 

  • Kumar A, Lee Y, Kim D et al (2017) Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds. Int J Biol Macromol 95:962–973

    Article  CAS  PubMed  Google Scholar 

  • Kumbhar S, Pawar S (2017) Self-functionalized, oppositely charged chitosan-alginate scaffolds for biomedical applications. Biotechnol Indian J 13:130–144

    Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KY, Kong HJ, Larson RG, Mooney DJ (2003) Hydrogel formation via cell crosslinking. Adv Mater 15:1828–1832

    Article  CAS  Google Scholar 

  • Lee J-B, Takeshita A, Hayashi K, Hayashi T (2011) Structures and antiviral activities of polysaccharides from Sargassum trichophyllum. Carbohydr Polym 86:995–999

    Article  CAS  Google Scholar 

  • Lee B-B, Bhandari BR, Howes T (2018) Gelation of an alginate film via spraying of calcium chloride droplets. Chem Eng Sci 183:1–12

    Article  CAS  Google Scholar 

  • LeRoux MA, Guilak F, Setton LA (1999) Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. J Biomed Mater Res 47:46–53

    Article  CAS  PubMed  Google Scholar 

  • Lewandowska-Łańcucka J, Mystek K, Mignon A, Van Vlierberghe S, Łatkiewicz A, Nowakowska M (2017) Alginate- and gelatin-based bioactive photocross-linkable hybrid materials for bone tissue engineering. Carbohydr Polym 157:1714–1722

    Article  PubMed  CAS  Google Scholar 

  • Li P, Dai Y-N, Zhang J-P, Wang A-Q, Wei Q (2008) Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomed Sci 4:221–228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Kong X, Zhang Z et al (2012) Cytotoxicity and biocompatibility evaluation of N, O-carboxymethyl chitosan/oxidized alginate hydrogel for drug delivery application. Int J Biol Macromol 50:1299–1305

    Article  CAS  PubMed  Google Scholar 

  • Li N, Sun G, Wang S et al (2017) Engineering islet for improved performance by optimized reaggregation in alginate gel beads. Biotechnol Appl Biochem 64:400–405

    Article  CAS  PubMed  Google Scholar 

  • Liakos I, Rizzello L, Bayer IS, Pompa PP, Cingolani R, Athanassiou A (2013) Controlled antiseptic release by alginate polymer films and beads. Carbohydr Polym 92:176–183

    Article  CAS  PubMed  Google Scholar 

  • Liberski AR (2016) Three-dimensional printing of alginate: from seaweeds to heart valve scaffolds. QSCI Connect 2016(2):3. https://doi.org/10.5339/connect.2016.3

    Article  Google Scholar 

  • Liberski A, Latif N, Raynaud C, Bollensdorff C, Yacoub M (2016) Alginate for cardiac regeneration: from seaweed to clinical trials. Glob Cardiol Sci Pract 1:e201604–e201628. https://doi.org/10.21542/gcsp.2016.4

    Article  Google Scholar 

  • Lin H-R, Sung K, Vong W-J (2004) In situ gelling of alginate/pluronic solutions for ophthalmic delivery of pilocarpine. Biomacromolecules 5:2358–2365. https://doi.org/10.1021/bm0496965

    Article  CAS  PubMed  Google Scholar 

  • Lin Y-H, Liang H-F, Chung C-K, Chen M-C, Sung H-W (2005) Physically crosslinked alginate/N, O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials 26:2105–2113

    Article  CAS  PubMed  Google Scholar 

  • Lin S-F, Chen Y-C, Chen R-N et al (2016) Improving the stability of astaxanthin by microencapsulation in calcium alginate beads. PLoS One 11(4):e0153685–e0153694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin SC-Y, Wang Y, Wertheim DF, Coombes AGA (2017) Production and in vitro evaluation of macroporous, cell-encapsulating alginate fibres for nerve repair. Mater Sci Eng C 73:653–664

    Article  CAS  Google Scholar 

  • Linhardt RJ (2003) 2003 Claude S. Hudson award address in carbohydrate chemistry. Heparin: structure and activity. J Med Chem 46:2551–2564

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Jiang L, Xu G, Ma C, Yang X, Yao J (2014) Potential of alginate fibers incorporated with drug-loaded nanocapsules as drug delivery systems. J Mater Chem B 2:7596–7604

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Nielsen LH, Kłodzińska SN et al (2018) Ciprofloxacin-loaded sodium alginate/poly (lactic-co-glycolic acid) electrospun fibrous mats for wound healing. Eur J Pharm Biopharm 123:42–49

    Article  CAS  PubMed  Google Scholar 

  • Ma HL, Hung SC, Lin SY, Chen YL, Lo WH (2003) Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. J Biomed Mater Res A 64:273–281

    Article  PubMed  CAS  Google Scholar 

  • Maciel D, Figueira P, Xiao S et al (2013) Redox-responsive alginate nanogels with enhanced anticancer cytotoxicity. Biomacromolecules 14:3140–3146

    Article  CAS  PubMed  Google Scholar 

  • Malakar J, Nayak AK, Das A (2013) Modified starch (cationized)–alginate beads containing aceclofenac: formulation optimization using central composite design. Starch-Stärke 65:603–612

    Article  CAS  Google Scholar 

  • Mandal S, Basu SK, Sa B (2010) Ca2+ ion cross-linked interpenetrating network matrix tablets of polyacrylamide-grafted-sodium alginate and sodium alginate for sustained release of diltiazem hydrochloride. Carbohydr Polym 82:867–873

    Article  CAS  Google Scholar 

  • Martins M, Barros AA, Quraishi S et al (2015) Preparation of macroporous alginate-based aerogels for biomedical applications. J Supercrit Fluids 106:152–159

    Article  CAS  Google Scholar 

  • Mata E, Igartua M, Patarroyo ME, Pedraz JL, Hernández RM (2011) Enhancing immunogenicity to PLGA microparticulate systems by incorporation of alginate and RGD-modified alginate. Eur J Pharm Sci 44:32–40

    Article  CAS  PubMed  Google Scholar 

  • Mazzitelli S, Luca G, Mancuso F et al (2011) Production and characterization of engineered alginate-based microparticles containing ECM powder for cell/tissue engineering applications. Acta Biomater 7:1050–1062

    Article  CAS  PubMed  Google Scholar 

  • McSwain B, Irvine R, Hausner M, Wilderer P (2005) Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl Environ Microbiol 71:1051–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ménard M, Dusseault J, Langlois G et al (2010) Role of protein contaminants in the immunogenicity of alginates. J Biomed Mater Res B Appl Biomater 93:333–340

    Article  PubMed  CAS  Google Scholar 

  • Meng X, Tian F, Yang J, He C-N, Xing N, Li F (2010) Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application. J Mater Sci Mater Med 21:1751–1759

    Article  CAS  PubMed  Google Scholar 

  • Miralles G, Baudoin R, Dumas D et al (2001) Sodium alginate sponges with or without sodium hyaluronate: in vitro engineering of cartilage. J Biomed Mater Res A 57:268–278

    Article  CAS  Google Scholar 

  • Mørch Ý, Donati I, Strand B, Skjåk-Bræk G (2007) Molecular engineering as an approach to design new functional properties of alginate. Biomacromolecules 8:2809–2814

    Article  PubMed  CAS  Google Scholar 

  • Mori M, Rossi S, Bonferoni MC et al (2014) Calcium alginate particles for the combined delivery of platelet lysate and vancomycin hydrochloride in chronic skin ulcers. Int J Pharm 461:505–513

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay P, Sarkar K, Soam S, Kundu P (2013) Formulation of pH-responsive carboxymethyl chitosan and alginate beads for the oral delivery of insulin. J Appl Polym Sci 129:835–845

    Article  CAS  Google Scholar 

  • Mukhopadhyay P, Chakraborty S, Bhattacharya S, Mishra R, Kundu P (2015) pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. Int J Biol Macromol 72:640–648

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay P, Maity S, Mandal S, Chakraborti AS, Prajapati AK, Kundu PP (2018) Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment. Carbohydr Polym 182:42–51

    Article  CAS  PubMed  Google Scholar 

  • Murakami K, Aoki H, Nakamura S et al (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31:83–90

    Article  CAS  PubMed  Google Scholar 

  • Naghizadeh Z, Karkhaneh A, Khojasteh A (2018) Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: injectable in situ forming scaffolds. Mater Sci Eng C 89:256–264

    Article  CAS  Google Scholar 

  • Nahar K, Hossain MK, Khan TA (2017) Alginate and its versatile application in drug delivery. J Pharm Sci Res 9:606–617

    CAS  Google Scholar 

  • Narayanan RP, Melman G, Letourneau NJ, Mendelson NL, Melman A (2012) Photodegradable iron (III) cross-linked alginate gels. Biomacromolecules 13:2465–2471

    Article  CAS  PubMed  Google Scholar 

  • Nešić A, Onjia A, Davidović S et al (2017) Design of pectin-sodium alginate based films for potential healthcare application: study of chemico-physical interactions between the components of films and assessment of their antimicrobial activity. Carbohydr Polym 157:981–990

    Article  PubMed  CAS  Google Scholar 

  • Newsom EC, Connolly KL, Nehal KS (2015) Facilitating healing of granulating wounds: dressings, dermal substitutes, and other methods. Curr Dermatol Rep 4:125–133

    Article  Google Scholar 

  • Ng WL, Yeong WY, Naing MW (2017) Polyvinylpyrrolidone-based bio-ink improves cell viability and homogeneity during drop-on-demand printing. Materials 10:190–201

    Article  PubMed Central  CAS  Google Scholar 

  • Nieto-Suárez M, López-Quintela MA, Lazzari M (2016) Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly. Carbohydr Polym 141:175–183

    Article  PubMed  CAS  Google Scholar 

  • Orive G, Carcaboso A, Hernandez R, Gascon A, Pedraz J (2005) Biocompatibility evaluation of different alginates and alginate-based microcapsules. Biomacromolecules 6:927–931

    Article  CAS  PubMed  Google Scholar 

  • Orive G, Tam SK, Pedraz JL, Hallé J-P (2006) Biocompatibility of alginate–poly-l-lysine microcapsules for cell therapy. Biomaterials 27:3691–3700

    Article  CAS  PubMed  Google Scholar 

  • Otterlei M, Ostgaard K, Skjåk-Bræk G, Smidsrød O, Soon-Shiong P, Espevik T (1991) Induction of cytokine production from human monocytes stimulated with alginate. J Immunother 10:286–291

    Article  CAS  PubMed  Google Scholar 

  • Pankongadisak P, Ruktanonchai UR, Supaphol P, Suwantong O (2015) Development of silver nanoparticles-loaded calcium alginate beads embedded in gelatin scaffolds for use as wound dressings. Polym Int 64:275–283

    Article  CAS  Google Scholar 

  • Paques JP, van der Linden E, van Rijn CJM, Sagis LMC (2014) Preparation methods of alginate nanoparticles. Adv Colloid Interf Sci 209:163–171

    Article  CAS  Google Scholar 

  • Park SO, Han J, Minn KW, Jin US (2013) Prevention of capsular contracture with Guardix-SG® after silicone implant insertion. Aesthet Surg J 37:543–548

    Article  Google Scholar 

  • Park H, Lee HJ, An H, Lee KY (2017) Alginate hydrogels modified with low molecular weight hyaluronate for cartilage regeneration. Carbohydr Polym 162:100–107

    Article  CAS  PubMed  Google Scholar 

  • Pasbakhsh P, De Silva R, Vahedi V, Churchman GJ (2016) Halloysite nanotubes: prospects and challenges of their use as additives and carriers–a focused review. Clay Miner 51:479–487

    Article  CAS  Google Scholar 

  • Passemard S, Szabó L, Noverraz F et al (2017) Synthesis strategies to extend the variety of alginate-based hybrid hydrogels for cell microencapsulation. Biomacromolecules 18:2747–2755

    Article  CAS  PubMed  Google Scholar 

  • Patel MA, AbouGhaly MH, Schryer-Praga JV, Chadwick K (2017) The effect of ionotropic gelation residence time on alginate cross-linking and properties. Carbohydr Polym 155:362–371

    Article  CAS  PubMed  Google Scholar 

  • Paul K, Linh NTB, B-r K et al (2015) Effect of rat bone marrow derived–stem cell delivery from serum-loaded oxidized alginate–gelatin–biphasic calcium phosphate hydrogel for bone tissue regeneration using a nude mouse critical-sized calvarial defect model. J Bioact Compat Polym 30:188–208

    Article  CAS  Google Scholar 

  • Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33:3279–3305

    Article  CAS  PubMed  Google Scholar 

  • Petchsomrit A, Sermkaew N, Wiwattanapatapee R (2017) Alginate-based composite sponges as gastroretentive carriers for Curcumin-loaded self-microemulsifying drug delivery systems. Sci Pharm 85:11–26

    Article  PubMed Central  Google Scholar 

  • Popa EG, Reis RL, Gomes ME (2015) Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage. Crit Rev Biotechnol 35:410–424

    Article  PubMed  CAS  Google Scholar 

  • Qin Y (2008) Alginate fibres: an overview of the production processes and applications in wound management. Polym Int 57:171–180

    Article  CAS  Google Scholar 

  • Quraishi S, Martins M, Barros AA et al (2015) Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. J Supercrit Fluids 105:1–8

    Article  CAS  Google Scholar 

  • Radhakrishnan A, Jose GM, Kurup M (2015) PEG-penetrated chitosan–alginate co-polysaccharide-based partially and fully cross-linked hydrogels as ECM mimic for tissue engineering applications. Prog Biomater 4:101–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsey DM, Wozniak DJ (2005) Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 56:309–322

    Article  CAS  PubMed  Google Scholar 

  • Rangaraj A, Harding K, Leaper D (2011) Role of collagen in wound management. Wounds UK 7:54–63

    Google Scholar 

  • Raposo MF dJ, de Morais RMSC, Bernardo de Morais AMM (2013) Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs 11:233–252

    Article  Google Scholar 

  • Rashaan ZM, Krijnen P, van den Akker-van ME et al (2016) Clinical effectiveness, quality of life and cost-effectiveness of Flaminal® versus Flamazine® in the treatment of partial thickness burns: study protocol for a randomized controlled trial. Trials 17:122–130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reddy N, Reddy R, Jiang Q (2015) Crosslinking biopolymers for biomedical applications. Trends Biotechnol 33:362–369

    Article  CAS  PubMed  Google Scholar 

  • Rezvanian M, Ahmad N, Amin MCIM, Ng S-F (2017) Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int J Biol Macromol 97:131–140

    Article  PubMed  CAS  Google Scholar 

  • Rinaudo M (1992) On the abnormal exponents a ν and a D in Mark Houwink type equations for wormlike chain polysaccharides. Polym Bull 27:585–589

    Article  CAS  Google Scholar 

  • Rogers CJ, Clark PM, Tully SE et al (2011) Elucidating glycosaminoglycan–protein–protein interactions using carbohydrate microarray and computational approaches. Proc Natl Acad Sci USA 108:9747–9752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronghua H, Yumin D, Jianhong Y (2003) Preparation and in vitro anticoagulant activities of alginate sulfate and its quaterized derivatives. Carbohydr Polym 52:19–24

    Article  Google Scholar 

  • Rosellini E, Cristallini C, Barbani N, Vozzi G, Giusti P (2009) Preparation and characterization of alginate/gelatin blend films for cardiac tissue engineering. J Biomed Mater Res A 91:447–453

    Article  PubMed  CAS  Google Scholar 

  • Rossi S, Mori M, Vigani B et al (2018) A novel dressing for the combined delivery of platelet lysate and vancomycin hydrochloride to chronic skin ulcers: hyaluronic acid particles in alginate matrices. Eur J Pharm Sci 118:87–95

    Article  CAS  PubMed  Google Scholar 

  • Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53

    Article  CAS  PubMed  Google Scholar 

  • Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278–301

    Article  CAS  Google Scholar 

  • Ruvinov E, Cohen S (2016) Alginate biomaterial for the treatment of myocardial infarction: progress, translational strategies, and clinical outlook: from ocean algae to patient bedside. Adv Drug Deliv Rev 96:54–76

    Article  CAS  PubMed  Google Scholar 

  • Rzaev ZM, Dincer S, Pişkin E (2007) Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog Polym Sci 32:534–595

    Article  CAS  Google Scholar 

  • Sachan NK, Pushkar S, Jha A, Bhattcharya A (2009) Sodium alginate: the wonder polymer for controlled drug delivery. J Pharm Res 2:1191–1199

    Google Scholar 

  • Sajesh K, Jayakumar R, Nair SV, Chennazhi K (2013) Biocompatible conducting chitosan/polypyrrole–alginate composite scaffold for bone tissue engineering. Int J Biol Macromol 62:465–471

    Article  CAS  PubMed  Google Scholar 

  • Samanta HS, Ray SK (2014) Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide. Carbohydr Polym 99:666–678

    Article  CAS  PubMed  Google Scholar 

  • Sarei F, Dounighi NM, Zolfagharian H, Khaki P, Bidhendi SM (2013) Alginate nanoparticles as a promising adjuvant and vaccine delivery system. Indian J Pharm Sci 75:442–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarker A, Amirian J, Min YK, Lee BT (2015) HAp granules encapsulated oxidized alginate–gelatin–biphasic calcium phosphate hydrogel for bone regeneration. Int J Biol Macromol 81:898–911

    Article  CAS  PubMed  Google Scholar 

  • Schweiger RG (1962a) Acetylation of alginic acid. I. Preparation and viscosities of algin acetates. J Organomet Chem 27:1786–1789

    Article  CAS  Google Scholar 

  • Schweiger RG (1962b) Acetylation of alginic acid. II. Reaction of algin acetates with calcium and other divalent ions. J Organomet Chem 27:1789–1791

    Article  CAS  Google Scholar 

  • Seeli DS, Dhivya S, Selvamurugan N, Prabaharan M (2016) Guar gum succinate-sodium alginate beads as a pH-sensitive carrier for colon-specific drug delivery. Int J Biol Macromol 91:45–50

    Article  CAS  PubMed  Google Scholar 

  • Shaari N, Kamarudin SK (2015) Chitosan and alginate types of bio-membrane in fuel cell application: an overview. J Power Sources 289:71–80

    Article  CAS  Google Scholar 

  • Shachar M, Tsur-Gang O, Dvir T, Leor J, Cohen S (2011) The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater 7:152–162

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Patel C, Trivedi H (1995) Ceric-induced grafting of acrylate monomers onto sodium alginate. Carbohydr Polym 26:61–67

    Article  CAS  Google Scholar 

  • Shao L, Cao Y, Li Z, Hu W, Li S, Lu L (2018) Dual responsive aerogel made from thermo/pH sensitive graft copolymer alginate-gP (NIPAM-co-NHMAM) for drug controlled release. Int J Biol Macromol 114:1338–1344

    Article  CAS  PubMed  Google Scholar 

  • Shapiro L, Cohen S (1997) Novel alginate sponges for cell culture and transplantation. Biomaterials 18:583–590

    Article  CAS  PubMed  Google Scholar 

  • Shen W, Hsieh Y-L (2014) Biocompatible sodium alginate fibers by aqueous processing and physical crosslinking. Carbohydr Polym 102:893–900

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Alves NM, Mano JF (2008) Chitosan coated alginate beads containing poly (N-isopropylacrylamide) for dual-stimuli-responsive drug release. J Biomed Mater Res B Appl Biomater 84:595–603

    Article  PubMed  CAS  Google Scholar 

  • Shilpa A, Agrawal S, Ray AR (2003) Controlled delivery of drugs from alginate matrix. J Macromol Sci Polym Rev 43:187–221

    Article  CAS  Google Scholar 

  • Shin S-J, Park J-Y, Lee J-Y et al (2007) “On the fly” continuous generation of alginate fibers using a microfluidic device. Langmuir 23:9104–9108

    Article  CAS  PubMed  Google Scholar 

  • Sibaja B, Culbertson E, Marshall P et al (2015) Preparation of alginate–chitosan fibers with potential biomedical applications. Carbohydr Polym 134:598–608

    Article  CAS  PubMed  Google Scholar 

  • Simó G, Fernández-Fernández E, Vila-Crespo J, Ruipérez V, Rodríguez-Nogales JM (2017) Research progress in coating techniques of alginate gel polymer for cell encapsulation. Carbohydr Polym 170:1–14

    Article  PubMed  CAS  Google Scholar 

  • Skjåk-Bræk G, Grasdalen H, Smidsrød O (1989a) Inhomogeneous polysaccharide ionic gels. Carbohydr Polym 10:31–54

    Article  Google Scholar 

  • Skjåk-Bræk G, Zanetti F, Paoletti S (1989b) Effect of acetylation on some solution and gelling properties of alginates. Carbohydr Res 185:131–138

    Article  Google Scholar 

  • Smidsrød O, Draget KI (1997) Alginate gelation technologies. In: Dickinson E, Bergenstahl B (eds) Food colloids: proteins, lipids and polysaccharides. Woodhead Publishing Limited, Cambridge, pp 279–293

    Google Scholar 

  • Smidsrød O, Skja G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    Article  PubMed  Google Scholar 

  • Sosnik A (2014) Alginate particles as platform for drug delivery by the oral route: state-of-the-art. ISRN Pharm 2014:926157–926164

    PubMed  PubMed Central  Google Scholar 

  • Sowjanya J, Singh J, Mohita T et al (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf B: Biointerfaces 109:294–300

    Article  CAS  PubMed  Google Scholar 

  • Straccia MC, d’Ayala GG, Romano I, Oliva A, Laurienzo P (2015) Alginate hydrogels coated with chitosan for wound dressing. Mar Drugs 13:2890–2908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumayya A, Muraleedhara Kurup G (2017) Marine macromolecules cross-linked hydrogel scaffolds as physiochemically and biologically favorable entities for tissue engineering applications. J Biomater Sci Polym Ed 28:807–825

    Article  CAS  PubMed  Google Scholar 

  • Summa M, Russo D, Penna I et al (2018) A biocompatible sodium alginate/povidone iodine film enhances wound healing. Eur J Pharm Biopharm 122:17–24

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6:1285–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeney I, Miraftab M, Collyer G (2014) Absorbent alginate fibres modified with hydrolysed chitosan for wound care dressings–II. Pilot scale development. Carbohydr Polym 102:920–927

    Article  CAS  PubMed  Google Scholar 

  • Szekalska M, Puciłowska A, Szymańska E, Ciosek P, Winnicka K (2016) Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int J Polym Sci 2016:171–175

    Google Scholar 

  • Szekalska M, Sosnowska K, Zakrzeska A, Kasacka I, Lewandowska A, Winnicka K (2017) The influence of chitosan cross-linking on the properties of alginate microparticles with metformin hydrochloride—in vitro and in vivo evaluation. Molecules 22:182–202

    Article  PubMed Central  CAS  Google Scholar 

  • Szymonowicz M, Kucharska M, Wiśniewska-Wrona M, Dobrzyński M, Kołodziejczyk K, Rybak Z (2017) The evaluation of resorbable haemostatic wound dressings in contact with blood in vitro. Acta Bioeng Biomech 19:151–165

    PubMed  Google Scholar 

  • Taleb MFA, Alkahtani A, Mohamed SK (2015) Radiation synthesis and characterization of sodium alginate/chitosan/hydroxyapatite nanocomposite hydrogels: a drug delivery system for liver cancer. Polym Bull 72:725–742

    Article  CAS  Google Scholar 

  • Tallawi M, Rosellini E, Barbani N et al (2015) Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: a review. J R Soc Interface 12(108):20150254–20150278. https://doi.org/10.1098/rsif.2015.0254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tally M, Atassi Y (2015) Optimized synthesis and swelling properties of a pH-sensitive semi-IPN superabsorbent polymer based on sodium alginate-g-poly (acrylic acid-co-acrylamide) and polyvinylpyrrolidone and obtained via microwave irradiation. J Polym Res 22:181–193

    Article  CAS  Google Scholar 

  • Tam S, Bilodeau S, Dusseault J, Langlois G, Hallé J-P, Yahia L (2011) Biocompatibility and physicochemical characteristics of alginate–polycation microcapsules. Acta Biomater 7:1683–1692

    Article  CAS  PubMed  Google Scholar 

  • Tarusha L, Paoletti S, Travan A, Marsich E (2018) Alginate membranes loaded with hyaluronic acid and silver nanoparticles to foster tissue healing and to control bacterial contamination of non-healing wounds. J Mater Sci Mater Med 29:22–35

    Article  PubMed  CAS  Google Scholar 

  • Thomas E, Wade A, Crawford G, Jenner B, Levinson N, Wilkinson J (2014) Randomised clinical trial: relief of upper gastrointestinal symptoms by an acid pocket-targeting alginate–antacid (Gaviscon Double Action)–a double-blind, placebo-controlled, pilot study in gastro-oesophageal reflux disease. Aliment Pharmacol Ther 39:595–602

    Article  CAS  PubMed  Google Scholar 

  • Tøndervik A, Klinkenberg G, Aachmann FL et al (2013) Mannuronan C-5 epimerases suited for tailoring of specific alginate structures obtained by high-throughput screening of an epimerase mutant library. Biomacromolecules 14:2657–2666

    Article  PubMed  CAS  Google Scholar 

  • Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28:621–630

    Article  PubMed  Google Scholar 

  • Tripathy T, Singh R (2001) Characterization of polyacrylamide-grafted sodium alginate: a novel polymeric flocculant. J Appl Polym Sci 81:3296–3308

    Article  CAS  Google Scholar 

  • Tripathy T, Pandey S, Karmakar N, Bhagat R, Singh R (1999) Novel flocculating agent based on sodium alginate and acrylamide. Eur Polym J 35:2057–2072

    Article  CAS  Google Scholar 

  • Tzankova V, Aluani D, Kondeva-Burdina M et al (2017) Hepatoprotective and antioxidant activity of quercetin loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity. Biomed Pharmacother 92:569–579

    Article  CAS  PubMed  Google Scholar 

  • Ummarino D, Miele E, Martinelli M et al (2015) Effect of magnesium alginate plus simethicone on gastroesophageal reflux in infants. J Pediatr Gastroenterol Nutr 60:230–235

    Article  CAS  PubMed  Google Scholar 

  • Unagolla JM, Jayasuriya AC (2018) Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. Eur J Pharm Sci 114:199–209

    Article  CAS  PubMed  Google Scholar 

  • Venkatesan J, Bhatnagar I, Manivasagan P, Kang K-H, Kim S-K (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281

    Article  CAS  PubMed  Google Scholar 

  • Vijayabaskar P, Babinastarlin S, Shankar T, Sivakumar T, Anandapandian K (2011) Quantification and characterization of exopolysaccharides from Bacillus subtilis (MTCC 121). Adv Biol Res 5:71–76

    CAS  Google Scholar 

  • Villani S, Marazzi M, Bucco M et al (2008) Statistical approach in alginate membrane formulation for cell encapsulation in a GMP-based cell factory. Acta Biomater 4:943–949

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wang A (2010) Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly (sodium acrylate) and polyvinylpyrrolidone. Carbohydr Polym 80:1028–1036

    Article  CAS  Google Scholar 

  • Wang L, Khor E, Wee A, Lim LY (2002) Chitosan-alginate PEC membrane as a wound dressing: assessment of incisional wound healing. J Biomed Mater Res A 63:610–618

    Article  CAS  Google Scholar 

  • Wang Q, Jamal S, Detamore MS, Berkland C (2011) PLGA-chitosan/PLGA-alginate nanoparticle blends as biodegradable colloidal gels for seeding human umbilical cord mesenchymal stem cells. J Biomed Mater Res A 96:520–527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Z, Zhang X, Gu J, Yang H, Nie J, Ma G (2014) Electrodeposition of alginate/chitosan layer-by-layer composite coatings on titanium substrates. Carbohydr Polym 103:38–45

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Nune K, Misra R (2016) The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules. Acta Biomater 36:143–151

    Article  CAS  PubMed  Google Scholar 

  • Wassermann A (1948) Alginic acid acetate. Nature 158:197–198

    Google Scholar 

  • Wathoni N, Motoyama K, Higashi T, Okajima M, Kaneko T, Arima H (2016) Physically crosslinked-sacran hydrogel films for wound dressing application. Int J Biol Macromol 89:465–470

    Article  CAS  PubMed  Google Scholar 

  • Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  • Williams SK, Touroo JS, Church KH, Hoying JB (2013) Encapsulation of adipose stromal vascular fraction cells in alginate hydrogel spheroids using a direct-write three-dimensional printing system. BioRes Open Access 2:448–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie H, Chen X, Shen X et al (2018) Preparation of chitosan-collagen-alginate composite dressing and its promoting effects on wound healing. Int J Biol Macromol 107:93–104

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Bi D, Wu X et al (2014) Unsaturated guluronate oligosaccharide enhances the antibacterial activities of macrophages. FASEB J 28:2645–2654

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Shen R, Yan Y, Gao J (2017) Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion eletrospinning. J Mech Behav Biomed Mater 65:428–438

    Article  CAS  PubMed  Google Scholar 

  • Xue Y-T, Li S, Liu W-J et al (2018) The mechanisms of sulfated polysaccharide drug of propylene glycol alginate sodium sulfate (PSS) on bleeding side effect. Carbohydr Polym 194:365–374

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Wang X, Xiong Z et al (2005) Direct construction of a three-dimensional structure with cells and hydrogel. J Bioact Compat Polym 20:259–269

    Article  CAS  Google Scholar 

  • Yan G, Guo Y, Yuan J, Liu D, Zhang B (2011) Sodium alginate oligosaccharides from brown algae inhibit Salmonella Enteritidis colonization in broiler chickens. Poult Sci 90:1441–1448

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Rathe F, Gilissen C et al (2014) The effect of enamel matrix derivative (emdogain®) on gene expression profiles of human primary alveolar bone cells. J Tissue Eng Regen Med 8:463–472

    Article  CAS  PubMed  Google Scholar 

  • Yang J-S, Xie Y-J, He W (2011) Research progress on chemical modification of alginate: a review. Carbohydr Polym 84:33–39

    Article  CAS  Google Scholar 

  • Yang J, Chen J, Pan D, Wan Y, Wang Z (2013) pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Carbohydr Polym 92:719–725

    Article  CAS  PubMed  Google Scholar 

  • Yao B, Ni C, Xiong C, Zhu C, Huang B (2010) Hydrophobic modification of sodium alginate and its application in drug controlled release. Bioprocess Biosyst Eng 33:457–463

    Article  CAS  PubMed  Google Scholar 

  • Yiğitoğlu M, Aydın G, Işıklan N (2014) Microwave-assisted synthesis of alginate-g-polyvinylpyrrolidone copolymer and its application in controlled drug release. Polym Bull 71:385–414

    Article  CAS  Google Scholar 

  • Yu J, Du KT, Fang Q et al (2010) The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials 31:7012–7020

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Ni C, Grist SM, Bayly C, Cheung KC (2015) Alginate core-shell beads for simplified three-dimensional tumor spheroid culture and drug screening. Biomed Microdevices 17:33–41

    Article  PubMed  CAS  Google Scholar 

  • Yu N, Li G, Gao Y, Jiang H, Tao Q (2016) Thermo-sensitive complex micelles from sodium alginate-graft-poly (N-isopropylacrylamide) for drug release. Int J Biol Macromol 86:296–301

    Article  CAS  PubMed  Google Scholar 

  • Zenobi-Wong M, Palazzolo G, Mhanna R, Becher J, Moller S, Schnabelrauch M (2018) Sulfated alginate hydrogels for cell culture and therapy. Google Patents

    Google Scholar 

  • Zhang YS, Khademhosseini A (2017) Advances in engineering hydrogels. Science 356:3627–3653

    Article  CAS  Google Scholar 

  • Zhang X, Huang C, Zhao Y, Jin X (2017) Preparation and characterization of nanoparticle reinforced alginate fibers with high porosity for potential wound dressing application. RSC Adv 7:39349–39358

    Article  CAS  Google Scholar 

  • Zhao L, Weir MD, Xu HH (2010a) An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials 31:6502–6510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Cao M, Li H, Li L, Xu W (2010b) Synthesis and characterization of thermo-sensitive semi-IPN hydrogels based on poly (ethylene glycol)-co-poly (ε-caprolactone) macromer, N-isopropylacrylamide, and sodium alginate. Carbohydr Res 345:425–431

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Kim J, Cezar CA et al (2011) Active scaffolds for on-demand drug and cell delivery. Proc Natl Acad Sci USA 108:67–72

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Li J, Feng Y et al (2018) Self-aggregation behavior of hydrophobic sodium alginate derivatives in aqueous solution and their application in the nanoencapsulation of acetamiprid. Int J Biol Macromol 106:418–424

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Shi X, Gao Y, Cai N, Jiang Z, Xu X (2015) Anti-inflammatory activity of guluronate oligosaccharides obtained by oxidative degradation from alginate in lipopolysaccharide-activated murine macrophage RAW 264.7 cells. J Agric Food Chem 63:160–168

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Funds from FCT through project PEst-OE/EQB/LA0016/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Manuel Santos Costa de Morais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Batista, P.S.P., de Morais, A.M.M.B., Pintado, M.M.E., de Morais, R.M.S.C. (2019). Alginate: Pharmaceutical and Medical Applications. In: Cohen, E., Merzendorfer, H. (eds) Extracellular Sugar-Based Biopolymers Matrices. Biologically-Inspired Systems, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-12919-4_16

Download citation

Publish with us

Policies and ethics