Skip to main content

Correlations Between Inhibitor Binding Thermodynamics and Co-crystal Structures with Carbonic Anhydrases

  • Chapter
  • First Online:
Carbonic Anhydrase as Drug Target

Abstract

In order to be able to design chemical compounds that recognize a particular CA isoform, meaning that they would bind particular isoform with high affinity while not binding other isoforms, it is important to understand how compounds recognize the protein surface. To understand which structural features yield what types of changes in the binding energetics, we search for correlations between compound–isoform co-crystal structures and intrinsic thermodynamics of binding. The compounds are being compared by arranging them in matched molecular pairs that differ by a single functional group responsible for the change in binding thermodynamics. Part of the ligands bound in similar orientations of the benzenesulfonamide ring, while others bound in dissimilar orientation. All similar binders exhibited significant increase in entropic forces upon increase in the buried surface of the compounds, while dissimilar binders had various thermodynamics. Several mechanisms were identified, perfect geometry fit and a molecular trap. The softness of the CA active site and the water molecules are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Klebe, G.: Applying thermodynamic profiling in lead finding and optimization. Nat. Rev. Drug Discov. 14, 95–110 (2015)

    Article  CAS  Google Scholar 

  2. Geschwindner, S., Ulander, J., Johansson, P.: Ligand binding thermodynamics in drug discovery: still a hot tip? J. Med. Chem. 58, 6321–6335 (2015)

    Article  CAS  Google Scholar 

  3. Claveria-Gimeno, R., Vega, S., Abian, O., Velazquez-Campoy, A.: A look at ligand binding thermodynamics in drug discovery. Expert Opin. Drug Discov. 12, 363–377 (2017)

    Article  CAS  Google Scholar 

  4. Freire, E.: Do enthalpy and entropy distinguish first in class from best in class? Drug Discov. Today 13, 869–874 (2008)

    Article  CAS  Google Scholar 

  5. Snyder, P.W., Lockett, M.R., Moustakas, D.T., Whitesides, G.M.: Is it the shape of the cavity, or the shape of the water in the cavity? Eur. Phys. J. Spec. Top. 223, 853–891 (2013)

    Article  Google Scholar 

  6. Smirnov, A., ZubrienÄ—, A., Manakova, E., GraĹľulis, S., Matulis, D.: Crystal structure correlations with the intrinsic thermodynamics of human carbonic anhydrase inhibitor binding. PeerJ 6, e4412 (2018)

    Article  Google Scholar 

  7. Zubrienė, A., et al.: Intrinsic thermodynamics of 4-substituted-2,3,5,6-tetrafluorobenzenesulfonamide binding to carbonic anhydrases by isothermal titration calorimetry. Bio-phys. Chem. 205, 51–65 (2015)

    Google Scholar 

  8. Fisher, Z., et al.: Neutron structure of human carbonic anhydrase II: a hydrogen-bonded water network “switch” is observed between pH 7.8 and 10.0. Biochemistry 50, 9421–9423 (2011). PDB ID: 3TMJ

    Article  CAS  Google Scholar 

  9. Michalczyk, R., et al.: Joint neutron crystallographic and nmr solution studies of tyr residue ionization and hydrogen bonding: implications for enzyme-mediated proton transfer. Proc. Natl. Acad. Sci. U. S. A. 112, 5673–5678 (2015). PDB ID: 4Q49, 4Y0J

    Article  CAS  Google Scholar 

  10. Kovalevsky, A., et al.: “To be or not to be” protonated: atomic details of human carbonic anhydrase-clinical drug complexes by neutron crystallography and simulation. Structure 26, 383–390 (2018)

    Article  CAS  Google Scholar 

  11. Aggarwal, M., et al.: Neutron structure of human carbonic anhydrase II in complex with methazolamide: mapping the solvent and hydrogen-bonding patterns of an effective clinical drug. IUCrJ 3, 319–325 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daumantas Matulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smirnov, A., Manakova, E., Matulis, D. (2019). Correlations Between Inhibitor Binding Thermodynamics and Co-crystal Structures with Carbonic Anhydrases. In: Matulis, D. (eds) Carbonic Anhydrase as Drug Target. Springer, Cham. https://doi.org/10.1007/978-3-030-12780-0_17

Download citation

Publish with us

Policies and ethics