Skip to main content

Assessment of Deep-Sea Faunal Communities-Indicators of Environmental Impact

  • Chapter
  • First Online:
Environmental Issues of Deep-Sea Mining

Abstract

Our assessment of deep-sea faunal communities is based on the results of a comprehensive UNESCO/IOC baseline study of the megafaunal assemblages of the metallic nodule ecosystem of five areas within the Clarion Clipperton Zone (CCZ) of the eastern Pacific Ocean. This study serves as benchmark to interpret the structure of megafaunal populations associated with benthic biotopes in areas targeted for mining. It identifies on a large scale the variability of nodule and sediment facies and their associations with specific megafaunal communities. An appropriate set of management tools and options have been developed, in particular indicators of sensitivity to environmental changes anthropogenically or naturally induced. The general characteristics of the nodule ecosystem in the CCZ and its sensitivity to deep-sea mining are discussed from the surface to the seabed in relation to recent research on the description of water masses and dynamics and an assessment of their vulnerability. A tridimensional multiparametric rapid environmental assessment (REA) has been applied on one pilot site of the French contract area using GIS zoning, ecohydrodynamics, and sensitivity indexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aller, R. (1997). Benthic community response to temporal and spatial gradients in physical disturbance within a deep-sea western boundary region. Deep-Sea Research Part I, 44, 39–69.

    Article  Google Scholar 

  • Amon, D. J., Hilario, A., Martinez Arbizu, P., & Smith, C. R. (2016a). Observations of organic falls in the abyssal Clarion Clipperton zone, tropical Eastern Pacific Ocean. Marine Biodiversity. https://doi.org/10.1007/s12526-016-0572-4.

    Article  Google Scholar 

  • Amon, D., Ziegler, A., Dahlgren, T., Glover, A., Goineau, A., Gooday, A., Wiklund, H., & Smith, C. (2016b). First insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule región in the eastern Clarion Clipperton zone. Nature Scientific Reports, 6, 30492. https://doi.org/10.1038/srep30492.

  • Amon, D. J., Ziegler, A., Kremenetskaia, A., Mah, C., Mooi, R., O’Hara, T., Pawson, D., Roux, M., & Smith, C. (2017). Megafauna of the UKSRL exploration contract area and eastern Clarion Clipperton zone in the Pacific ocean: Echinodermata. Biodiversity Data Journal, 5, e11794. https://doi.org/10.3897/BDJ.5.e11794.

    Article  Google Scholar 

  • Amos, A. F., Roels, O. A., Mos, A. F., Roels, O. A., Garside, C., Malone, T. C., et al. (1977). Environmental aspects of nodule mining. In G. P. Glasby (Ed.), Marine manganese deposits (pp. 391–437). Amsterdam: Elsevier Publication Company.

    Chapter  Google Scholar 

  • Ardron, J., Gjerde, K., Pullen, S., & Tilot, V. (2008). Marine spatial planning in the high seas. Marine Policy The International Journal of Ocean Affairs, 32(5), 832–839.

    Google Scholar 

  • Arhan, M., Mercier, H., & Lutjeharms, J. R. E. (1999). The disparate evolution of three Agulhas rings in the south Atlantic Ocean. Journal of Geophysical Research, 104, 20,987–21,005. https://doi.org/10.1029/1998JC900047.

    Article  Google Scholar 

  • ASOM (Académie des Sciences d’Outre-Mer). (2010). Recommendations on the conservation and management of biodiversity of three deep-sea ecosystems targeted by mining (polymetallic nodules, cobalt rich ferro-manganese crusts and hydrothermal sulfurs). Proceedings of the international workshop organized at UNESCO, 15 December 2010.

    Google Scholar 

  • Baldwin, R. J., Glatts, R. C., & Smith, K. L. (1998). Particulate matter fluxes into the benthic boundary layer at a long time-series station in the abyssal NE Pacific: Composition and fluxes. Deep-Sea Research II, 45, 643–665.

    Google Scholar 

  • Barange, M., Field, J. G., Harris, R. P., Hofmann, E. H., Perry, R. I., & Werner, F. E. (Eds.). (2010). Marine ecosystems and global change. Oxford: Oxford University Press, 436 pp.

    Google Scholar 

  • Barbier, E. B., Moreno-Mateos, D., Rogers, A. D., Aronson, J., Pendleton, L., Danovaro, R., Henry, L. A., Morato, T., Ardron, J., & Van Dover, C. L. (2014). Ecology: Protect the deep sea. Nature, 505, 7484.

    Article  Google Scholar 

  • Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303–309. https://doi.org/10.1038/nature04141.

    Article  Google Scholar 

  • Beaulieu, S. E., & Smith, K. L., Jr. (1998). Phytodetritus entering the benthic boundary layer and aggregated on the sea floor in the abyssal NE Pacific: Macro- and microscopic composition. Deep-Sea Research II, 45, 781–815.

    Article  Google Scholar 

  • Behrenfeld, M. J., O’Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., et al. (2006). Climate-driven trends in contemporary ocean productivity. Nature, 444, 752–755. https://doi.org/10.1038/nature05317.

    Article  Google Scholar 

  • Berkes, F., Colding, J. C., & Folke, C. (2003). Navigating socio-ecological systems: Building resilience for complexity and change, ecology and society. Ecology and Society, 9(1), 1.

    Google Scholar 

  • Billett, D. S. M., Llewellyn, C., & Watson, J. (1988). Are deep-sea holothurian selective feeders? In R. D. Burke et al. (Eds.), Echinoderm biology (pp. 421–429). Rotterdam: A. Balkima Publishers.

    Google Scholar 

  • Block, B. A., Costa, D. P., Boehlert, G. W., & Kochevar, R. E. (2003). Revealing pelagic habitat use: The tagging of Pacific pelagics program. Oceanologica Acta, 25, 255–266.

    Article  Google Scholar 

  • Block, B. A., Jonsen, S. J., Winship, A. J., Schaefer, S. A., Bograd, S. J., et al. (2011). Tracking apex marine predator movements in a dynamic ocean. Nature, 475(7354), 86–90. https://doi.org/10.1038/nature10082.

    Article  Google Scholar 

  • Bluhm, H. (1997). Megafauna as indicators for the recolonization of abyssal areas impacted by physical disturbances. International symposium on environmental studies for deep-sea mining (Tokyo, Japan), 49–63.

    Google Scholar 

  • Bluhm, H. (2001). Re-establishment of an abyssal megabenthic community after experimental physical disturbance of the seafloor. Deep-Sea Research II, 48, 3841–3868.

    Article  Google Scholar 

  • Bluhm, H., & Gebruk, A. (1999). Holothuroidea (Echinodermata) of the Peru basin. Ecological and taxonomical remarks based on underwater images. Marine Ecology, 20(2), 167–195.

    Article  Google Scholar 

  • Bluhm, H., Schriever, G., & Thiel, H. (1995). Megabenthic recolonization in an experimentally disturbed abyssal manganese nodule area. Marine Georesources and Geotechnology, 13, 393–416.

    Article  Google Scholar 

  • Bostock, H. C., Opdyke, B. N., & Williams, M. J. M. (2010). Characterising the intermediate depth waters of the Pacific Ocean using δ13C and other geochemical tracers. Deep-Sea Research Part I: Oceanographic Research Papers, 57(7), 847–859.

    Google Scholar 

  • Broecker, W. S., Takahashi, T., & Takahashi, T. (1985). Sources and flow patterns of deep-ocean waters as deduced from potential temperature, salinity and initial phosphate concentration. Journal of Geophysical Research, 90, 6925–6939.

    Article  Google Scholar 

  • Catalá, T. S., Reche, I., Fuentes-Lema, A., Romera-Castillo, C., Nieto-Cid, M., Ortega-Retuerta, E., et al. (2015a). Turnover time of fluorescent dissolved organic matter in the dark global ocean. Nature Communications, 6, 5986. https://doi.org/10.1038/ncomms6986.

    Article  Google Scholar 

  • Catalá, T. S., Reche, I., Álvarez, M., Khatiwala, S., Guallart, E. F., Benítez-Barrios, V. M., et al. (2015b). Water mass age and ageing driving chromophoric dissolved organic matter in the dark global ocean. Global Biogeochemical Cycles, 29, 1–18. https://doi.org/10.1002/2014GB005048.

    Article  Google Scholar 

  • Chung, J. S., Schriever, G., Sharma, R., & Yamazaki, T. (2001). Deep seabed mining environment: engineering and environment assessment. Proceedings of ISOPE-ocean mining symposium, Sczczcin, Poland (pp. 8–14).

    Google Scholar 

  • Cury, P., & Shannon, L. (2004). Regime shifts in upwelling ecosystems: Observed changes and possible mechanisms in the northern and southern Benguela. Progress Oceanography, 60, 223–243.

    Article  Google Scholar 

  • Dahlgren, T. G., Wiklund, H., Rabone, M., Amon, D. J., Ikebe, C., Watling, L., Smith, C. R., & Glover, A. G. (2016). Abyssal fauna of the UK-1 polymetallic nodule exploration claim, Clarion-Clipperton zone, Central Pacific Ocean: Cnidaria. Biodiversity Data Journal, 4, e9277. https://doi.org/10.3897/BDJ.4.e9277.

    Article  Google Scholar 

  • Danovaro, R. (2008). Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Current Biology, 18, 1–8.

    Article  Google Scholar 

  • Davies, J., Baxter, J., Bradley, M., Connor, D., Khan, J., Murray, E., et al. (2001). Marine monitoring handbook. Peterborough: Joint Nature Conservation Council, 405 pp. (ISBN 1 85716 550 0).

    Google Scholar 

  • Dayton, P. K., & Hessler, R. R. (1972). Role of biological disturbance in maintaining diversity in the deep-sea. Deep Sea Research, 19, 199–208.

    Google Scholar 

  • Dittmar, T. (2014). The biogeochemistry of marine dissolved organic matter. In D. A. Hansell & C. A. Carlson (Eds.), Academic.

    Google Scholar 

  • Drazen, J. C., Baldwin, R. J., & Smith, K. L., Jr. (1998). Sediment community response to a temporally varying food supply at an abyssal station in the NE Pacific. Deep-Sea Research Pt II, 45, 893–913.

    Article  Google Scholar 

  • Du Castel, V. (1985). Etablissement d’une carte géologique au 1/20 000e d’un domaine océanique profond dans une zone riche en nodules polymétalliques du Pacifique Nord (zone Clarion-Clipperton). Thèse de Doctorat, Université de Bretagne Occidentale, Brest, France.

    Google Scholar 

  • Durden, J. M., Bette, B. J., Jones, D. O. B., Huvenne, V. A., & Ruhl, H. A. (2015). Abyssal hills-hidden source of increased habitat heterogeneity, benthic megafaunal biomass and diversity in the deep sea. Progress in Oceanography, 137(Part A), 209–218.

    Article  Google Scholar 

  • Dymond, J., & Collier, R. (1988). Biogenic particle fluxes in the equatorial Pacific: Evidence for both high and low productivity during the 1982–1983 El Niño. Global Biogeochemical Cycles, 2, 129–137.

    Article  Google Scholar 

  • ESCO CNRS IFREMER. (2014). Impacts environnementaux de l’exploitation des ressources minerales marines profondes. Rapport d’expertise scientifique collective. 939 pp.

    Google Scholar 

  • FAO Fisheries and Aquaculture. (2000). Biological characteristics of tuna. Michel Goujon and Jacek Majkowski. http://www.fao.org/fishery/topic/16082/en.

  • Feely, R. A., Sabinelli, C. L., Schlitzer, R., Bullister, J. L., Mecking, S., & Greeley, D. (2004). Remineralization in the upper water column of the Pacific Ocean. Journal of Oceanography, 60, 45–52.

    Article  Google Scholar 

  • Fiedler, P., & Talley, L. D. (2006). Hydrography of the eastern tropical Pacific: A review [Hidrografía del Pacífico tropical oriental: Una revisión]. Progress in Oceanography, 69, 143–180.

    Article  Google Scholar 

  • Fiedler, P. C., Mendelssohn, R., Palacios, D. M., & Bograd, S. J. (2013). Pycnocline variations in the eastern tropical and north Pacific, 1958–2008. Journal of Climate, 26, 583–599. https://doi.org/10.1175/JCLI-D-11-00728.1

    Article  Google Scholar 

  • Flood, R. D. (1983). Classification of sedimentary furrows and a model for furrows initiation and evolution. Geological Society of America Bulletin, 630–639.

    Article  Google Scholar 

  • Foell, E., Thiel, H., & Schriever, G. (1990). DISCOL: A long-term large scale disturbance-recolonisation experiment in the Abyssal Eastern Tropical Pacific Ocean. Proceedings of offshore technology conference, Houston. (pp. 497–503).

    Google Scholar 

  • Foley, M. M., Halpern, B. S., Micheli, F., Armsby, M. H., Caldwell, M. R., Crain, C. M., et al. (2010). Guiding ecological principles for marine spatial planning. Marine Policy, 34(5), 955–966. https://doi.org/10.1016/j.marpol.2010.02.001.

    Article  Google Scholar 

  • Friedrich, G., & Plüger, W. (1974). The distribution of manganese, iron, cobalt, nickel, copper and zinc in manganese nodules in various fields. Meerestechnik, 6, 203–206.

    Google Scholar 

  • Fukushima, T. (1995). Overview “Japan Deep-Sea impact experiment = JET”. Proceedings of ISOPE ocean mining symposium, Japan (pp. 47–53).

    Google Scholar 

  • Fukushima, T., Shirayama, Y., & Kuboki, E. (2000). The characteristics of deep-sea epifaunal megabenthos community two years after an artificial rapid deposition event. Publications of the SetoMarine Laboratory, 39, 17–27.

    Article  Google Scholar 

  • Gage, J. D., & Tyler, P. A. (1991). Deep-Sea biology: A natural history of organisms at the Deep-sea floor. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Galeron, J., Scolan P., Fifis, A., & Sibuet, M. (2006). Spatial variability of megafaunal assemblages in deep-sea polymetallic nodule fields in the North-East Pacific. Oral presentation, 11th deep-sea biology symposium (10–14 July 2006), Southampton, UK.

    Google Scholar 

  • Game, E. T., Grantham, H. S., Hobday, A. J., Pressey, R. L., Lombard, A. T., Beckley, L., et al. (2009). Pelagic protected areas: The missing dimension in ocean conservation. Trends in Ecology and Evolution, 24, 360–369.

    Article  Google Scholar 

  • Gardner, W. D., & Sullivan, L. G. (1981). Benthic storms: Temporal variability in a deep-ocean nepheloid layer. Science, 213, 3.

    Article  Google Scholar 

  • Gardner, W. D., Sullivan, L. G., & Thorndike, E. M. (1984). Long-term photographic, current, and nephelometer observations of manganese nodule environments in the Pacific. Earth and Planetary Science Letters, 70, 95–109.

    Article  Google Scholar 

  • Georgi, D. T. (1981). On the relationships between the large-scale property variations and fine structures of the Antarctic circumpolar current. Journal of Geophysical Research, 86, 6556–6566.

    Article  Google Scholar 

  • GESAMP. (2016). Proceedings of the GESAMP International Workshop on the Impacts of Mine Tailings in the Marine Environment. (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection). Rep. Stud. GESAMP, 94, 84 pp.

    Google Scholar 

  • Ghosh, A. K., & Mukhopadhyay, R. (2000). Mineral wealth of the ocean. Rotterdam: A.A. Balkema.

    Google Scholar 

  • Gianni, M., Fuller, S., Currie, D. E. J., Schleit, K., Pike, B., Goldsworthy, L., et al. (2016) How much longer will it take? A ten-year review of the implementation of United Nations General Assembly resolutions 61/105, 64/72 and 66/68 on the management of bottom fisheries in areas beyond national jurisdiction. Deep Sea Conservation Coalition.

    Google Scholar 

  • Glover, A. G., & Smith, C. R. (2003). The deep-sea floor ecosystem: Current status and prospects of anthropogenic change by the year 2025. Environmental Conservation, 30(3), 219–241.

    Article  Google Scholar 

  • Glover, A. G., Smith, C. R., Paterson, G. I. J., Wilson, G. D. F., Hawkins, L., & Sheader, M. (2002). Polychaete species diversity in the Central Pacific abyss: Local and regional patterns and relationships with productivity. Marine Ecology Progress Series, 2002, 157–170. https://doi.org/10.3354/meps240157.

    Article  Google Scholar 

  • Glover, A. G., Gooday, A. J., Bailey, D. M., Billett, D. S. M., Chevaldonné, P., Colaço, A., et al. (2010). Temporal change in deep-sea benthic ecosystems: A review of the evidence from recent time-series studies, Chapter 1. In Advances in marine biology (Vol. 58, pp. 1–95). Burlington: Elsevier Press.

    Google Scholar 

  • Glover, A. G., Wiklund, H., Rabone, M., Amon, D. J., Smith, C. R., O’Hara, T., Mah, C. L., & Dahlgren, T. G. (2016). Abyssal fauna of the UK-1 polymetallic nodule exploration claim, Clarion Clipperton zone, Central Pacific Ocean: Echinodermata. Biodiversity Data Journal, 4, e7251. https://doi.org/10.3897/BDJ.4.e7251.

    Article  Google Scholar 

  • Gooday, A. J. (2002). Biological responses to seasonally varying fluxes of organic matter to the ocean floor: A review. Journal of Oceanography, 58, 305–332.

    Article  Google Scholar 

  • Grassle, J. F., & Sanders, H. L. (1973). Life histories and the role of disturbance. Deep-Sea Research, 20, 643–659.

    Google Scholar 

  • Gray, J. S. (1997). Marine biodiversity: Patterns, threats and conservation needs. Biodiversity and Conservation, 6, 153–175.

    Article  Google Scholar 

  • Gundersen, L. H., & Pritchard, L. (2002). Resilience and the behaviour of large-scale systems. In L. H. Gundersen, & L. Pritchard (Eds.), Island Press. Washington, USA

    Google Scholar 

  • Haedrich, R. L., & Rowe, G. T. (1977). Megafaunal biomass in the deep-sea. Nature, 269, 141–142. https://doi.org/10.1038/269121a0.

    Article  Google Scholar 

  • Halbach, P., Friedrich, G., & von Stackelberg, U. (1988). The manganese Nodule Belt of the Pacific Ocean: Geological environment, nodule formation, and mining aspects. Stuttgart: F. Enke Verlag.Halbach, P. and Manheim, F.T.

    Google Scholar 

  • Hannides, A. K., & Smith, C. R. (2003). The northeastern Pacific abyssal plain. In K. D. Black & G. B. Shimmield (Eds.), Biogeochemistry of marine systems, chapter 10. Oxford: Blackwell Science.

    Google Scholar 

  • Harada, K. & Nishida, S. (1979). Biochronology of some Pacific manganese nodules and their growth mechanism. Colloques Internationaux du CNRS, Gif-sur-Yvette: 25–30.

    Google Scholar 

  • Hartmann, M. (1979). Evidence for early diagenetic mobilization of trace metals from dislocation of pelagic sediments. Chemical Geology, 26, 277–293.

    Article  Google Scholar 

  • Heezen, B., & Hollister, C. (1971). The face of the deep (pp. 1–659). New York: Oxford University Press.

    Google Scholar 

  • Henry, L.-A., Moreno Navas, J., & Roberts, J. M. (2013). Multi-scale interactions between local hydrography, seabed topography, and community assembly on cold-water coral reefs. Biogeosciences, 10, 2737–2746.

    Article  Google Scholar 

  • Heye, D. (1988). The internal microstructure of manganese nodules and their relationship to the growth rate. Marine Geology, 26, 59–66.

    Article  Google Scholar 

  • Hoffert, M., Le Suave, R., Pautot, G., Schaaf, A., Cochonat, P., Morel, Y., & Larque, P. (1992). Caractérisation, par observations directes à l’aide du submersible « Nautile », de structures érosives actuelles des zones à nodules polymétalliques du Pacifique Nord équatorial: les “taches grises”. Compte rendu à l’Académie des Sciences.

    Google Scholar 

  • Hoffert, M. (2008). Les nodules polymétalliques dans les grands fonds océaniques, une extraordinaire aventure minière et scientifique sous-marine. Société géologique de France. Editions VUIBERT. ISBN 978-2-7117-7166-0. 430 pp.

    Google Scholar 

  • Hoffert, M. & Saget, P. (2004). Manuel d’identification des “facies-nodules” pour la zone de plongées NIXO45. Rapport Interne IFREMER, Plouzané, France.

    Google Scholar 

  • Hollister, C. D., & McCave, I. N. (1984). Sedimentation under deep-sea storms. Nature, 309, 220–225.

    Article  Google Scholar 

  • Hollister, C. D., & Nowell, A. R. M. (1991). HEBBLE epilogue. Marine Geology, 99, 445–460.

    Article  Google Scholar 

  • Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., et al. (2003). Climate change, human impacts and the resilience of coral reefs. Science, 301(5635), 929–933.

    Article  Google Scholar 

  • Hughes, T. P., Bellwood, D. R., Folke, C., Steneck, R., & Wilson, J. (2005). New paradigms for supporting the resilience of marine ecosystems. Trends in Ecology and Evolution, 20, 380–385.

    Article  Google Scholar 

  • Huisman, J., Thi, N. N. P., Karl, D. M., & Sommeijer, B. (2006). Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature, 439, 322–325.

    Article  Google Scholar 

  • International Sea Bed Authority (I.S.B.A.). (2008). Technical study no. 3: Biodiversity, species ranges, and gene flow in the abyssal Pacific nodule province: predicting and managing the impacts of deep seabed mining. In C. R. Smith, J. Galeron, A. Gooday, A. Glover, H. Kitazato, L. Menot, et al. (Ed.), Edited for the International Seabed Authority of the “Kaplan Project”, 45 pp. ISBN: 978-976-95217-2-8.

    Google Scholar 

  • Jankowski, J., & Zielke, W. (2001). The mesoscale sediment transport due to technical activities in the deep sea. Deep-Sea Research II, 48, 3487–3521.

    Article  Google Scholar 

  • Janssen, A., Kaiser, S., Meißner, K., Brenke, N., Menot, L., & Martínez Arbizu, P. (2015). A reverse taxonomic approach to assess macrofaunal distribution patterns in abyssal pacific polymetallic nodule fields. PLoS One, 10, e0117790. https://doi.org/10.1371/journal.pone.0117790.

    Article  Google Scholar 

  • Jones, D., Kaiser, S., Sweetman, A., Smith, C., Menot, L., Vink, et al. (2017). Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. Plos ONE., Ed by K. Vopel, 12(2), e0171750. https://doi.org/10.1371/journal.pone.0171750.

    Article  Google Scholar 

  • Johnson, G. C. (2008). Quantifying Antarctic bottom water and north Atlantic deep water volumes. Journal of Geophysical Research, 113, C05027. https://doi.org/10.1029/2007JC004477.

    Article  Google Scholar 

  • Jumars, P. A., Mayer, L. M., Deming, J. W., Baross, J. A., & Wheatcroft, R. A. (1990). Deep-sea deposit feeding strategies suggested by environmental and feeding constraints. Philosophical Transactions of the RoyalSociety of London. A, 331, 85–101.

    Article  Google Scholar 

  • Karl, D. (2002). Nutrient dynamics in the deep blue sea. Trends in Microbiology, 10, 410–418.

    Article  Google Scholar 

  • Karl, D. M., Christian, J. R., Dore, J. E., Hebel, D. V., Letelier, R. M., Tupas, L. M., et al. (1996). Seasonal and interannual variability in primary production and particle flux at Station ALOHA. Deep-Sea Research, II(43), 539–568.

    Article  Google Scholar 

  • Karleskint, G., Turner, R., & Small, J. (2013). Introduction to marine biology. 4th Edition. Edition Brooks Cole. pp 529.

    Google Scholar 

  • Kaufman, R. S., & Smith, K. L. (1997). Activity patterns of mobile epibenthic megafauna at an abyssal site in the eastern North Pacific; results from a 17 month time-lapse photography study. Deep sea Research (Part I), 44(4), 559–579.

    Article  Google Scholar 

  • Kessler, W. S. (2006). The circulation of the eastern tropical Pacific: A review. Progress in Oceanography, 69, 181–217.

    Article  Google Scholar 

  • Kennett, J. P. (1982). Marine geology (pp. 1–815). Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Khripounoff, A., Caprais, J. C., & Crassous, P. (2006). Geochemical and biological recovery of the disturbed seafloor in polymetallic nodule fields of the Clipperton-Clarion Fracture Zone (CCFZ) at 5000m depth. Limnol Oceanogr, 51, 2033–2041.

    Article  Google Scholar 

  • Klein, H. (1987). Benthic storms, vortices and particle dispersion in the Deep West European Basin. Dtsch Hydrol Z., 49, 87–102.

    Article  Google Scholar 

  • Kontar, E. A., & Sokov, A. V. (1994). A benthic storm in the northeastern tropical Pacific over the fields of manganese nodules. Deep-Sea Research 1, 41(7), 1069–1089.

    Article  Google Scholar 

  • Kontar, E. A., & Sokov, A. V. (1997). On the benthic boundary layer’s dynamics. Journal of Marine Systems, 11, 369–385.

    Article  Google Scholar 

  • Kotlinski, R. (1998). The present state of knowledge on oceanic polymetallic ores as exemplified by Interoceanmetal Joint Organization’s activity. Mineralogia Polonica, 29, 77–89.

    Google Scholar 

  • Kotlinski, R. (1999). Metallogenesis of the world’s ocean against the background of oceanic crust evolution. Polish Geological Institute Special Papers, 4, 1–59.

    Google Scholar 

  • Lauerman, L. M., Smoak, J. M., Shaw, T. J., Moore, W. S., & Smith, K. L. (1997). 234 Th and 210 Pb evidence from rapid ingestion of settling particles by mobile epibenthic megafauna in the abyssal NE Pacific. Limnology and Oceanography, 42(3), 589–595.

    Article  Google Scholar 

  • Levin, L. A., Demaster, D. J., Mccann, L. D., & Thomas, C. L. (1986). Effects of giant protozoans (class Xenophyophorea) on deep-seamount benthos. Marine Ecology Progress Series, 29, 99–104.

    Article  Google Scholar 

  • Levin, L. A., Etter, R. J., Rex, M. A., Gooday, A. J., Smith, C. R., Pineda, J., et al. (2001). Environmental influences on regional deep-sea species diversity. Annual Review of Ecology and Systematics, 32, 51–93.

    Article  Google Scholar 

  • Levitus, S., Antonov, J. I., Boyer, T. P., & Stephens, C. (2000). Warming of the world ocean. Science, 287, 2225–2229.

    Article  Google Scholar 

  • Longhurst, A. R. (2007). Ecological geography of the sea (2nd ed.). Burlington: Academic. https://doi.org/10.1016/B978-012455521-1/50000-0.

    Book  Google Scholar 

  • Lonsdale, P., & Southard, J. B. (1974). Experimental erosion of north Pacific red clay. Marine Geology, 17, M51–M60.

    Article  Google Scholar 

  • Loreau, M. (2008). Biodiversity and ecosystem functioning: The mystery of the deep sea. Current Biology, 18, R126–R128.

    Article  Google Scholar 

  • Lutz, M. J., Caldeira, K., Dunbar, R. B., & Behrenfeld, M. J. (2007). Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. Journal of Geophysical Research, 112, 1–26.

    Article  Google Scholar 

  • Marsh, L., Huvenne, V. A., & Bones, D. (2018). Geomorphological evidence of large vertebrates interacting with the seafloor at abyssal depths in a region designated for deep-sea mining. Royal Society Open Science. https://doi.org/10.1098/rsos.180286.

    Article  Google Scholar 

  • Mauviel, A., & Sibuet, M. (1985). Répartition des traces animales and importance de la bioturbation. In: L. Laubier & C. Monniot (Eds), Peuplements profonds du Golfe de Gascogne. Campagne Biogas. (Ifremer publication).

    Google Scholar 

  • McCartney, M. S. (1982). The subtropical recirculation of mode waters. Journal of Marine Research, 40, 427–464.

    Google Scholar 

  • McGowan, J. A., Cayan, D. R., & Dorman, L. M. (1998). Climate–ocean variability and ecosystem response in the northeast Pacific. Science, 281, 210–217.

    Article  Google Scholar 

  • McMurtry, G. (2001). Authigenic deposits. In S. A. Thorpe & K. K. Turekian (Eds.), Encyclopedia of ocean sciences (pp. 201–220). London: Academic.

    Chapter  Google Scholar 

  • Menzies, R. J., George, R., & Rowe, G. T. (1975). Abyssal environment and ecology of the world oceans. New York: Wiley-Interscience. 44(1), 346.

    Google Scholar 

  • Montgomery, R. B. (1958). Water characteristics of Atlantic Ocean and World Ocean. Deep Sea Research, 5, 134–148.

    Article  Google Scholar 

  • Moreno Navas, J., Henry, L.-A., Miller, P., & Roberts, J. M. (2014). Ecohydrodynamics of cold-water coral reefs: A case study of the Mingulay reef complex (Western Scotland). PLoS One, 9(8), e106208. https://doi.org/10.1371/journal.pone.0098218.

    Article  Google Scholar 

  • Morgan, C. (1991). Geographical distributions of benthic megafauna in the Clarion-Clipperton zone. NOAA report.

    Google Scholar 

  • Mullineaux, L. S. (1987). Organisms living on manganese nodules and crusts: Distribution and abundance at three North Pacific sites. Deep-Sea Research, 34, 165–184.

    Article  Google Scholar 

  • Muschenheim, D. K. (1987). The dynamics of near-bed seston flux and suspension-feeding benthos. Journal of Marine Research, 45(2), 473–496.

    Article  Google Scholar 

  • Nowell, A. R. M., Hollister, C. D., & Jumars, P. A. (1982). High energy benthic boundary layer experiment: HEBBLE. Eos Transactions American Geophysical Union, 63(31), 594–595.

    Article  Google Scholar 

  • Oebius, H. U., Becker, H. J., Rolinski, S., & Jankowski, J. (2001). Parametrization and evaluation of marine environmental impacts produced by deep-sea manganese nodule mining. Deep-Sea Research II, 48, 3453–3467.

    Article  Google Scholar 

  • Onken, R. (1995). The spreading of lower circumpolar deep water into the Atlantic Ocean. Journal of Physical Oceanography, 25, 3051–3063.

    Article  Google Scholar 

  • Ozturgut, E., Lavelle, J. W., Steffin, O., & Swift, S. A. (1980). Environmental investigation during manganese nodule mining tests in the North Equatorial Pacific, in November 1978. NOAA Tech. Memorandum ERL MESA-48, NOAA, USA, 50.

    Google Scholar 

  • Paterson, G. L. J., Menot, L., Colaço, A., Glover, A. G., Gollner, S., Kaiser, S., et al. (2015). Biogeography and connectivity in deep-sea habitats with mineral resource potential gap analysis. MIDAS Delivery, 4, 45. Available online at: http://www.vliz.be/imisdocs/publications/41/268441.pdf.

    Google Scholar 

  • Pennington, T. J., Mahoney, K. L., Kuwahara, V. S., Kolber, D. D., Calienes, R., et al. (2006). Primary production in the eastern tropical Pacific: A review. Progress in Oceanography, 69, 285–317.

    Article  Google Scholar 

  • Pfannkuche, O., & Lochte, K. (1993). Open ocean pelago-benthic coupling: Cyanobacteria as tracers of sedimenting salp feces. Deep-Sea Research Part I, 40, 727–737.

    Article  Google Scholar 

  • Price, A. R. G. (2004). Rapid coastal environmental assessment. In: Standard survey methods for the red sea and Gulf of Aden. (PERSGA/GEF). PERSGA Technical Series 10. PERSGA, Jeddah, 1–2.

    Google Scholar 

  • Quirchmayr, R. (2015). On the existence of benthic storms. Journal of Nonlinear Mathematical Physics, 22(4), 540–544. https://doi.org/10.1080/14029251.2015.1113053.

    Article  Google Scholar 

  • Radziejewska, T. (1997). Immediate responses of benthic meio- and megafauna to disturbance caused by polymetallic nodule miner simulator. Proceedings of the international symposium on environmental studies for deep-sea mining, Tokyo, Japan (November 20–21), 223–235.

    Google Scholar 

  • Radziejewska, T. (2002). Responses of deep-sea meiobenthic communities to sediment disturbance simulating effects of polymetallic nodule mining. International Review of Hydrobiology, 87, 459–479.

    Article  Google Scholar 

  • Radziejewska, T., & Stoyanova, V. (2000). Abyssal epibenthic megafauna of the Clarion-Clipperton area (NE Pacific): changes in time and space versus anthropogenic environmental disturbance. Oceanological Studies, XXIX(2), 83–101.

    Google Scholar 

  • Ramirez-Llodra, E., Tyler, P. A., Baker, M. C., Bergstad, O. A., Clark, M. R., Escobar, E., et al. (2011). Man and the last great wilderness: Human impact on the deep sea. PLoS One, 6, e22588. https://doi.org/10.1371/journal.pone.0022588.

    Article  Google Scholar 

  • Rex, M. A. (1983). Geographic patterns of species diversity in the deep-sea benthos. In G. T. Rowe (Ed.), Deep sea biology (pp. 453–472). New York: Wiley.

    Google Scholar 

  • Rex, M., & Etter, R. (2010). Deep-sea biodiversity; pattern and scale. Cambridge, MA: Harvard University Press, 355 pp.

    Google Scholar 

  • Rogacheva, A., Gebruk, A., & Alt, C. (2012). Swimming deep-sea holothurians (Echinodermata: Holothuroidea) on the northern mid-atlantic ridge. Zoosymposia, 7, 213–224.

    Google Scholar 

  • Rolinski, S., Segschneider, J., & Sündermann, J. (2001). Long-term propagation of tailings from deep-sea mining under variable conditions by means of numerical simulations. Deep-Sea Research II, 48, 3469–3485.

    Article  Google Scholar 

  • Rowe, G. T. (1971). Benthic biomass and surface productivity. In J. D. Costlow (Ed.), Fertility of the sea (pp. 97–122). New York: Gordon and Breach.

    Google Scholar 

  • Ruhl, H. A., & Smith, K. L., Jr. (2004). Shifts in Deep-Sea community structure linked to climate and food supply. Science, 305, 513–515.

    Article  Google Scholar 

  • Saguez, G. (1985). Etude de la morphologie, de la structure interne and de la lithologie des nodules polymétalliques de la zone Clarion-Clipperton. Relations avec l’environnement. Thèse de Doctorat, Université de Bretagne Occidentale, Brest: 1–228.

    Google Scholar 

  • Sarmiento, J. L., Slater, R., Barber, R., Bopp, L., Doney, S. C., Hirst, A. C., et al. (2004). Response of ocean ecosystems to climate warming. Global Biogeochemical Cycles. https://doi.org/10.1029/2003GB002134.

    Article  Google Scholar 

  • Schneider, J. (1981). Manganese nodules in the deep sea. Formation, ocurrence and ecological consequencesof mining. Natur und Museum, III, 114–124.

    Google Scholar 

  • Schneider, D. C., Gagnon, J. M., & Gilkinson, K. D. (1987). Patchiness of epibenthic megafauna on the outer Grand Banks of Newfoundland. Marine Ecology Progress Series, 39, 1–13.

    Article  Google Scholar 

  • Schor, G., Falcone, E., Moretti, D., & Andrews, D. (2014). First Long-Term Behavioral Records from Cuvier’s Beaked Whales (Ziphius cavirostris) reveal record-breaking dives. PLOS one, 9(3), e92633.

    Article  Google Scholar 

  • Schriever, G., Ahnert, A., Borowski, C., & Thiel, H. (1997). Results of the large scale deep-sea impact study DISCOL during 8 years of investigation. In Proceedings international symposium environmental studies for deep-sea mining (pp. 237–243). Japan: Metal Mining Agency of Japan.

    Google Scholar 

  • Sharma, R. (2015). Environmental issues of deep-sea mining. Global challenges, policy framework and sustainable development for mining of mineral and fossil energy resources (GCPF2015). Procedia Earth and Planetary Science, 11(2015), 204–211.

    Article  Google Scholar 

  • Sharma, R., & Rao, A. (1992). Geological factors associated with megabenthic activity in the Central Indian Basin. Deep-Sea Research, 39(3/4), 705–713.

    Article  Google Scholar 

  • Sharma, R., Nagender Nath, B., Parthiban, S., & Jai Sankar, S. (2001). Sediment redistribution during simulated benthic disturbance and its implications on deep seabed mining. Deep-Sea Research Part II, 48, 3363–3380.

    Article  Google Scholar 

  • Shirayama, Y. (1999). Biological results of JET project: An overview. Proceedings of ISOPE ocean mining symposium, Goa, India, 1999 (pp. 185–190).

    Google Scholar 

  • Shor, G. (1959). Reflexion studies in the eastern equatorial Pacific. Deep-Sea Research, 5, 283–285.

    Article  Google Scholar 

  • Smith, C. R. (1999). The biological environment in the nodule provinces of the deep sea. In N. Odunton (Ed.), Deep-seabed polymetallic Nodule Exploration: Development of environmental guidelines (pp. 41–68). Kingston: International Seabed Authority.

    Google Scholar 

  • Smith, C. R., & Baco, A. R (2003). Ecology of whale falls at the deep-sea floor. In Oceanography and Marine Biology: An Annual Review. 41, 311–354

    Google Scholar 

  • Smith, C. R., & Demopoulos, A. (2003). Ecology of the deep. Pacific Ocean floor. In P. A. Tyler (Ed.), Ecosystems of the world, 28: Ecosystems of the deep. Ocean. Amsterdam: Elsevier.

    Google Scholar 

  • Smith, K. L., Jr., Kaufmann, R. S., & Wakefield, W. W. (1993). Mobile megafaunal activity monitored with a time-lapse camera in the abyssal North Pacific. Deep Sea Research Part I: Oceaonographic Research Papers, 40(11–12), 2307–2324. https://doi.org/10.1016/0967-0637(93)90106-D.

    Article  Google Scholar 

  • Smith, K. L., & Kaufmann, R. S. (1999). Long-term discrepancy between food supply and demand in the deep eastern north Pacific. Science, 284, 1174–1177.

    Article  Google Scholar 

  • Smith, C. R., & Rabouille, C. (2002). What controls the mixed-layer depth in deep-sea sediments? The importance of POC flux. Limnology and Oceanography, 47, 418–426.

    Article  Google Scholar 

  • Smith, C. R., & Trueblood, D. D. (1991). BIE I cruise report. R/V Yuzhmorgeologiya. Funded by NOAA.

    Google Scholar 

  • Smith, C. R., Jumars, P. A., & DeMaster, D. J. (1986). In situ studies of megafaunal mounds indicate rapid sediment turnover and community response at the deep-sea floor. Nature, 323, 251–252.

    Article  Google Scholar 

  • Smith, C. R., Berelson, W., Demaster, D. J., Dobbs, F. C., Hammond, D., Hoover, D. J., et al. (1997). Latitudinal variations in benthic processes in the abyssal equatorial Pacific: Control by biogenic particle flux. Deep-Sea Research, II(44), 2295–2317.

    Article  Google Scholar 

  • Smith, K. L., Kaufmann, R. S., Baldwin, R. J., & Carlucci, A. F. (2001). Pelagic-benthic coupling in the abyssal eastern North Pacific: An 8-year time-series study of food supply and demand. Limnology and Oceanography, 46, 543–556.

    Article  Google Scholar 

  • Smith, C. R., Levin, L., Koslow, A., Tyler, P., & Glover, A. (2008a). The near future of the deep sea floor ecosystems. In N. Polunin (Ed.), Aquatic ecosystems: trends and global prospects (pp. 334–349). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Smith, C., Gaines, S., Watling, L., Friedlander, A., Morgan, C., Thurnherr, A. et al. (2008b). Rationale and recommendations for the establishment of preservation reference areas for nodule mining in the Clarion-Clipperton Zone. Fourteenth session. Kingston, Jamaica, 26 May–6 June 2008. http://www.isa.org.jm/en/sessions/2008/documents. Legal and Technical Commission, International Seabed Authority. Technical document no. ISBA/14/LTC/2.

  • Smith, K. L., Ruhl, H., Bett, B., Billett, D., Lampitt, R., & Kaufmann, R. (2009). Climate, carbon cycling and deep-ocean ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106(46), 19211–19218.

    Google Scholar 

  • Snelgrove, P. V. R., & Smith, C. R. (2002). A riot of species in an environmental calm: The paradox of the species-rich deep sea. Oceanography and Marine Biology Annual Review, 40, 311–342.

    Google Scholar 

  • Spiess, F. N., Hessler, R., Wilson, G., & Weydert, M. (1987). Environmental effects of deep sea dredging, NOAA report, 87–5: 1–85.

    Google Scholar 

  • Steneck, R. S. (2001). Functional groups. In S. A. Levin (Ed.), Encyclopedia of biodiversity (Vol. 3, pp. 121–139). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Stoyanova, V. (2008). Some peculiarities of distribution patterns of polymetallic nodules associated megabenthic community”. Interoceanmetal Joint Organization. Oral Communication at the panel discussion “A proposition of strategy of conservation for a nodule ecosystem in the Clarion-Clipperton Fracture Zone, NE Pacific Ocean” organized by UNESCO/IOC on 12 Dec 2008.

    Google Scholar 

  • Suga, T., Takei, Y., & Hanawa, K. (1997). Thermostad distribution in the North Pacific subtropical gyre: The central mode water and the subtropical mode water. Journal of Physical Oceanography, 27, 140–152.

    Article  Google Scholar 

  • Talley, L. D. (1996). Antarctic intermediate water in the South Atlantic. In G. Wefer et al. (Eds.), The South Atlantic Present and Past Circulation (pp. 219–238). Berlin/Heidelberg: Springer Verlag.

    Google Scholar 

  • Talley, L. D., Pickard, G., Emery, W., & Swift, J. (2011). Descriptive physical oceanography: An introduction (6th ed.). Boston: Elsevier Academic Press, 560 p.

    Google Scholar 

  • Thiel, H., Bluhm, H., Borowski, C., Bussau, C., Gooday, A., Maybury, C., & Schriever, G. (1992). The impact of mining on deep sea organisms. The DISCOL-Project. Ocean Challenge, 3(1), 40–46.

    Google Scholar 

  • Thiel, H. (2001). Evaluation of the environmental consequences of polymetallic nodule mining based on the results of the TUSCH Research Association. Deep-Sea Research Part II, 48, 3433–3452.

    Article  Google Scholar 

  • Thiel, H. (2003). Anthropogenic impacts on the deep-sea. In P. A. Tyler (Ed.), Ecosystems of the world: The Deep Sea. Amsterdam: Elsevier.

    Google Scholar 

  • Thiel, H., Schriever, G., Bussau, C., & Borowski, C. (1993). Manganese nodule crevice fauna. Deep-Sea Research, 40(2), 419–423.

    Article  Google Scholar 

  • Thiel, H., Schriever, G., Ahnert, A., Bluhm, H., Borowski, C., & Vopel, K. (2001). The large scale environmental impact experiment DISCOL – Reflection and foresight. Deep-Sea Research II, II48, 3869–3882.

    Article  Google Scholar 

  • Thurston, M. H., Rice, A. L., & Bett, B. J. (1998). Latitudinal variation in invertebrate megafaunal abundance and biomass in the North Atlantic Ocean abyss. Deep-Sea Research II, 45, 203–224.

    Article  Google Scholar 

  • Tilot, V. (1988). Review of Environmental Impact studies on deep-sea polymetallic mining in the Eastern Central Pacific Ocean. Contract CEE CDC/88/7730/IN/01: 1–59. Report for the Commission of the European Communities Directorate-General for Industry.

    Google Scholar 

  • Tilot, V. (1989). Report to EU of the german oceanographic on – A DIS-turbance and re-COL-onization experiment DISCOL II in the Peru Basin, South Pacific. Contract CEE CDC/88/7730/IN/01: 1–59. Report for the Commission of the European Communities Directorate-General for Industry.

    Google Scholar 

  • Tilot, V. (1990a). Report to the Scripps Institution of Oceanography on the description of megafaunal assemblages in ECHO I on basis of the analysis of photographs of the seafloor by Deep Tow cameras on pilot study site of environmental impact.

    Google Scholar 

  • Tilot, V. (1990b). Report on U.S. Quagmire II cruise. R/V New Horizon-RUM III cruise, 23 April–17May 1990. Funded by EU, DG for industry and NOAA. IFREMER, Brest, France.

    Google Scholar 

  • Tilot, V. (1991). Report on the description of megafaunal assemblages and manganese nodule coverage along transects taken during the Benthic Impact Experiment (NOAA-BIE) cruise by NOAA and SCRIPPS, USA. June 24–July 1991. Contract CEE CDC/90/7730/IN/01: 1–59. Report for the Commission of the European Communities Directorate-General for Industry.

    Google Scholar 

  • Tilot, V. (1992). La structure des assemblages mégabenthiques d’une province à nodules polymétalliques de l’océan Pacifique tropical Est. [PhD dissertation thesis]. [Brest (France)]: University of Bretagne Occidentale.

    Google Scholar 

  • Tilot, V. (1995). An ecologically important type of biological activity in a deep-sea ferro-manganese nodule environment of the tropical north east Pacific. Mesogée, 54, 101–120.

    Google Scholar 

  • Tilot, V. (2003). Final report on the Gulf of Aqaba Monitoring Programme (GAMP). Egyptian Environmental Agency Affairs (EEAA) and European Commission, National Parks of Egypt Protectorates Development Programmes project. SEM 04/220/027 A.

    Google Scholar 

  • Tilot, V. (2004). Management plan for the marine mammals sanctuary in the Mediterranean sea «Pelagos» adopted by the governments of France, Italy and Monaco in October 2004, signatories to the Agreement on the creation of a sanctuary for marine mammals concluded on 25 November 1999. 107 pp.

    Google Scholar 

  • Tilot, V. (2005). Eritrea marine, coastal and islands biodiversity. Lectures on marine ecology, oceanography, marine organisms, seagrass ecology, mangrove ecology, fisheries, reef fish ecology, survey technics (coral, fish and invertebrate monitoring). ECMIB-GEF/UNDP project.

    Google Scholar 

  • Tilot, V. (2006a). Biodiversity and distribution of the megafauna Vol 1 The polymetallic nodule ecosystem of the Eastern Equatorial Pacific Ocean. Intergovernmental Oceanographic Commission. Technical Series 69, Project Unesco COI/Min Vlanderen, Belgium. http://unesdoc.unesco.org/images/0014/001495/149556f.pdf.

  • Tilot, V. (2006b). Biodiversity and distribution of the megafauna Vol 2 Annotated photographic Atlas of the echinoderms of the Clarion-Clipperton fracture zone. Intergovernmental Oceanographic Commission. Technical Series 69, Project Unesco/COI/MinVlanderen, Belgium. http://unesdoc.unesco.org/images/0014/001495/149556f.pdf.

  • Tilot, V. (2006c). Megabenthic assemblages of polymetallic nodule ecosystems in the Clarion-Clipperton Fracture Zone within the abyssal tropical East Pacific. In: Proceedings of workshop on prospects for international collaboration in marine environmental research to enhance understanding of the deep-sea environment, international seabed authority, Kingston, Jamaica, Appendix A, pp. 1–14.

    Google Scholar 

  • Tilot, V., Leujak, W., & Ormond, R. (2008a). Monitoring of south Sinai coral reefs: Influence of natural and anthropogenic factors. Aquatic Conservation: Marine and Freshwater ecosystems, 18(7), 1109–1126.

    Article  Google Scholar 

  • Tilot, V., Veron, C., & Jeudy de Grissac, A. (2008b). The coral reefs of Eritrea: Little known gems. In C. Wilkinson (Ed.), Status of coral reefs of the world: 2008 (p. 78). Townsville: Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre.

    Google Scholar 

  • Tilot, V. (2010a). Biodiversity and distribution of faunal assemblages Vol 3 Options for the management and conservation of the nodule ecosystem in the Clarion Clipperton Fracture Zone (NE Pacific Ocean): scientific, legal and institutional aspects. Technical Series 69, Project Unesco COI/Min, Vlaanderen, Belgium. http://unesdoc.unesco.org/images/0014/001495/149556e.pdf#223.

  • Tilot, V. (2010b). Panorama of epibenthic megafaunal communities in a deep sea nodule ecosystem of the CCZ, NE Pacific Ocean. In UNESCO/IOC, Tech. Series 69, vol 3. http://unesdoc.unesco.org/images/0014/001495/149556e.pdf#223.

  • Tilot, V. (2011). Recommendations for the conservation and management of the biodiversity of deep sea ecosystems targeted by seabed mining (Polymetallic Nodule Deposits, Cobalt-Rich Ferromanganese Crusts and Hydrothermal Sulfides). Proceedings 40th annual conference of the Underwater Mining Institute, Hilo, Hawaii, 14–18 September, 2011.

    Google Scholar 

  • Tilot, V. (2013). Tools for marine spatial management in deep seas (A guide for Research, Conservation and Development Practitioners). Proceedings of the International Marine Protected Areas Congress (IMPAC3), IUCN/Agence des Aires Marines Protégées (Fr), Marseille, France, 21–27 October 2013.

    Google Scholar 

  • Tilot, V. (2014). An innovative multilayer rapid ecological assessment adapted to monitoring and management of Deep Sea Ecosystems. Proceedings deep sea mining summit 2014, London, UK. 17–19 March 2014.

    Google Scholar 

  • Tilot, V. (2016). General features of the coral reef communities of the Daymaniyat islands, Oman sultanate and designation of management indexes for Environmental Sensitivity mapping. IUCN/ROWA report.

    Google Scholar 

  • Tilot, V., Ormond, R., Moreno-Navas, J., & Catala, T. (2018). The benthic megafaunal assemblages of the CCZ (Eastern Pacific) and an approach to their management in the face of threatened anthropogenic impacts. Frontiers in Marine Science, 5, 7. https://doi.org/10.3389/fmars.2018.00007.

    Article  Google Scholar 

  • Tkatchenko, G., & Radziejewska T. (1998). Recovery and recolonization processes in the area disturbed by a polymetallic nodule collector simulator. In: J. S. Chung, M. Olagnon, C. H. Kim, & W. Koterayama (Eds.), Proceedings of the 8th ISOPE conference, Montreal, Canada, vol. 2, pp. 282–286.

    Google Scholar 

  • Tkatchenko, G., Radziejewska, T., Stoyanova, V., Modlitba, I., Parizek, A., et al. (1996). Benthic impact experiment in the IOM pioneer area: Testing for effects of deep-sea disturbance. In International seminar on deep sea mining, 1997 (pp. 223–236). Tokyo, Japan: Metal Mining Agency of Japan.

    Google Scholar 

  • Tortell, P. (1992). Coastal zone sensitivity mapping and its role in marine environmental management. Marine Polution Bulletin, 25, 88–93.

    Article  Google Scholar 

  • Trueblood, D. D., Ozturgut, E., Philipchuk, M., & Gloumov, I. F. (1997). The ecological impacts of the Joint US-Russian Benthic Impact Experiment. In Proceedings of the international symposium on environmental studies for deep-sea mining (pp. 237–243). Tokyo, Japan: Metal Mining Agency of Japan.

    Google Scholar 

  • Tsuchiya, M. (1981). The origin of the Pacific equatorial 13°C water. Journal of Physical Oceanography, 11(6), 794–812.

    Article  Google Scholar 

  • Tyler, P. A. (1988). Seasonality in the deep sea. Oceanography and Marine Biology. Annual Review, 26, 227–258.

    Google Scholar 

  • Tyler, P. A. (2003). Ecosystems of the world. In Ecosystems of the deep oceans (Vol. 28). Amsterdam/Boston: Elsevier Press. ISBN 0 444 82619 X. 569 pp.

    Google Scholar 

  • Vanreusel, A., Hilario, A., Ribiero, P., Menot, L., & Martinez Arbizu, P. (2016). Threatened by mining polymetallic nodules are required to preserve abyssal epifauna. Scientific Reports, 6, 26808. https://doi.org/10.1038/srep26808(2016).

    Article  Google Scholar 

  • Voisset, M., & Hein, P. (1978). Géochimie des nodules du Pacifique Nord-Est. Rapports scientifiques et techniques du CNEXO. Ifremer, France.

    Google Scholar 

  • Von Stackelberg, U., & Beiersdorf, H. (1991). The formation of manganese nodules between the Clarion and Clipperton fracture zones southeast of Hawaii. In Marine geology (Vol. 98, pp. 411–423). Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Wang, Y., Li, J., Han, X., & WU, Z. (2001). The influence of terrain slope on the distribution of polymetallic nodules. Acta Oceanologica Sinica, 23(1), 65–23.

    Google Scholar 

  • Wilson, G. D. F. (1990). Cruise report on RUM 3-R/V New Horizon Cruise “Quagmire II”: 23 April–17 May 1990. SIO reference series, number 90–25, August 1990.

    Google Scholar 

Download references

Acknowledgments

The research presented in this paper would not have been possible without the support of the “Institut Français de Recherche pour l’Exploitation de la Mer” (IFREMER), which made available its facilities, cruises, data, and expertise, through teams from the departments of Deep Ocean Ecosystems and Marine Geosciences, with the funding from the European Commission, DG Enterprise and Industry, the “Institut Océanographique de Paris” (France) and the National Oceanic and Atmospheric Administration (NOAA), US Department of Commerce (USA). Later support was provided by the Intergovernmental Oceanographic Commission of UNESCO (IOC-UNESCO) and the Government of Flanders to update and expand the work with BIE site. Cruises and data were also been made available by SCRIPPS (Dr. George Wilson) for the ECHO I site and for Quagmire cruise, by NOAA for BIE site (Dr. Craig Smith and D. Trueblood), by the University of Hamburg, (Prof H. Thiel) for the DISCOL cruise in the Peru Basin, South Pacific. Data for the water mass analysis was available thanks to the Malaspina expedition (grant number CSD2008-00077). The author thanks the department of PATRINAT of the National Museum of Natural History (MNHN), Paris (France) and the “Instituto Español de Oceanografía,” Malaga (Spain), for their support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tilot, V. (2019). Assessment of Deep-Sea Faunal Communities-Indicators of Environmental Impact. In: Sharma, R. (eds) Environmental Issues of Deep-Sea Mining. Springer, Cham. https://doi.org/10.1007/978-3-030-12696-4_6

Download citation

Publish with us

Policies and ethics