Skip to main content

Passive Beam Combining for the Development of High Power SOA-Based Tunable Fiber Compound-Ring Lasers Using Low Power Optical Components

  • Chapter
  • First Online:
Optics, Photonics and Laser Technology 2017

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 222))

  • 1097 Accesses

Abstract

A simple, stable, compact, and cost-effective dual-output port widely tunable SOA-based fiber compound-ring laser structure is demonstrated. Such a unique nested ring cavity enables the splitting of optical power into various branches where amplification and wavelength selection for each branch are achieved utilizing low-power SOAs and a tunable filter, respectively. Furthermore, splicing Sagnac Loop Mirrors at each end of the bidirectional fiber compound-ring cavity not only allows them to serve as variable reflectors but also enables them to channel the optical energy back to the same port thus omitting the need for high optical power combiners. Further discussed is how the said bidirectional fiber compound-ring laser structure can be extended to achieve a high-power fiber laser source by exclusively using low power optical components such as N × N couplers and (N > 1) number of SOAs. More than 98% coherent beam combining efficiency of two parallel nested fiber ring resonators is achieved over the C-band tuning range of 30 nm. Optical signal-to-noise ratio (OSNR) of +45 dB, and optical power fluctuation of less than ±0.02 dB are measured over 3 h at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X. He, X. Fang, C. Liao, D.N. Wang, J. Sun, A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity. Opt. Express 17, 21773–21781 (2009)

    Article  ADS  Google Scholar 

  2. P. Barnsley, P. Urquhart, C. Millar, M. Brierley, Fiber Fox-Smith resonators: application to single-longitudinal-mode operation of fiber lasers. J. Opt. Soc. Am. A 5, 1339–1346 (1988)

    Article  ADS  Google Scholar 

  3. K. Iwatsuki, A. Takada, K. Hagimoto, M. Saruwatari, Y. Kimura, M. Shimizu, Er3+-doped fiber-ring-laser with less than 10 kHz linewidth, in Optical Fiber Communication Conference, Vol. 5 of 1989 OSA Technical Digest Series (Optical Society of America, 1989), paper PD5

    Google Scholar 

  4. J. Zhang, C.Y. Yue, G.W. Schinn, W.R.L. Clements, J.W.Y. Lit, Stable single-mode compound-ring erbium-doped fiber laser. J. Lightwave Technol. 14, 104–109 (1996)

    Article  ADS  Google Scholar 

  5. X. Chen, J. Yao, Z. Deng, Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser. Opt. Lett. 30, 2068–2070 (2005)

    Article  ADS  Google Scholar 

  6. Z. Ou, Z. Dai, B. Wu, L. Zhang, Z. Peng, Y. Liu, Research of narrow line-width Er3+-doped fiber ring laser with FBG F-P etalon and FBG Sagnac loop, in Microelectronic and Optoelectronic Devices and Integration, 2009 International Conference on Optical Instruments and Technology 2008

    Google Scholar 

  7. J. Zhang, J.W.Y. Lit, Compound fiber ring resonator: theory. J. Opt. Soc. Am. A 11, 1867–1873 (1994)

    Article  ADS  Google Scholar 

  8. P. Urquhart, Compound optical-fiber-based resonators. J. Opt. Soc. Am. A 5, 803–812 (1988)

    Article  ADS  Google Scholar 

  9. J. Zhang, J.W.Y. Lit, All-fiber compound ring resonator with a ring filter. J. Lightwave Technol. 12, 1256–1262 (1994)

    Article  ADS  Google Scholar 

  10. J. Capmany, M.A. Muriel, A new transfer matrix formalism for the analysis of fiber ring resonators: compound coupled structures for FDMA demultiplexing. J. Lightwave Technol. 8, 1904–1919 (1990)

    Article  ADS  Google Scholar 

  11. W. Shi, Q. Fang, X. Zhu, R.A. Norwood, N. Peyghambarian, Fiber lasers and their applications [Invited]. Appl. Opt. 53, 6554–6568 (2014)

    Article  ADS  Google Scholar 

  12. D.J. Jiang, X.F. Chen, Y.T. Dai, H.T. Liu, S.Z. Xie, A novel distributed feedback fiber laser based on equivalent phase shift. IEEE Photon. Technol. Lett. 16, 2598 (2004)

    Article  ADS  Google Scholar 

  13. Y.T. Dai, X.F. Chen, D.J. Jiang, S.Z. Xie, C.C. Fan, Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period. IEEE Photon. Technol. Lett. 16, 2284 (2004)

    Article  ADS  Google Scholar 

  14. X.F. Chen, J.P. Yao, F. Zeng, Z.C. Deng, Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating. IEEE Photon. Technol. Lett. 17, 1390 (2004)

    Article  ADS  Google Scholar 

  15. R.R.A. Syms, H. Zou, J. Stagg, H. Veladi, Sliding-blade MEMS iris and variable optical attenuator. J. Micromech. Microeng. 14, 1700 (2004)

    Article  ADS  Google Scholar 

  16. A. Unamuno, D. Uttamchandani, MEMS variable optical attenuator with Vernier latching mechanism. IEEE Photon. Technol. Lett. 18, 88–90 (2006)

    Article  ADS  Google Scholar 

  17. C. Marxer, P. Griss, N.F. de Rooij, A variable optical attenuator based on silicon micromechanics. IEEE Photon. Technol. Lett. 11, 233–235 (1999)

    Article  ADS  Google Scholar 

  18. Q. Li, A.A. Au, C.-H. Lin, E.R. Lyons, H.P. Lee, An efficient all-fiber variable optical attenuator via acoustooptic mode coupling. IEEE Photon. Technol. Lett. 14, 1563–1565 (2002)

    Article  ADS  Google Scholar 

  19. A. Duduś, R. Blue, M. Zagnoni, G. Stewart, D. Uttamchandani, Modeling and characterization of an electrowetting-based single-mode fiber variable optical attenuator. IEEE J. Sel. Topics Quantum Electron. 21, 253–261 (2015)

    Article  ADS  Google Scholar 

  20. A. Benner, H.M. Presby, N. Amitay, Low-reflectivity in-line variable attenuator utilizing optical fiber tapers. J. Lightwave Technol. 8, 7–10 (1990)

    Article  ADS  Google Scholar 

  21. C. Kerbage, A. Hale, A. Yablon, R.S. Windeler, B.J. Eggleton, Integrated all-fiber variable attenuator based on hybrid microstructure fiber. Appl. Phys. Lett. 79, 3191–3193 (2001)

    Article  ADS  Google Scholar 

  22. K.S. Lim, C.H. Pua, S.W. Harun, H. Ahmad, Temperature-sensitive dual-segment polarization maintaining fiber Sagnac loop mirror. Opt. Laser Technol. 42, 377–381 (2010)

    Article  ADS  Google Scholar 

  23. G. Sun, D.S. Moon, Y. Chung, Simultaneous temperature and strain measurement using two types of high-birefringence fibers in Sagnac loop mirror. IEEE Photon. Technol. Lett. 19, 2027–2029 (2007)

    Article  ADS  Google Scholar 

  24. H.Y. Fu, H.Y. Tam, L.-Y. Shao, X. Dong, P.K.A. Wai, C. Lu, S.K. Khijwania, Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer. Appl. Opt. 47, 2835–2839 (2008)

    Article  ADS  Google Scholar 

  25. G. Das, J.W.Y. Lit, Wavelength switching of a fiber laser with a Sagnac loop reflector. IEEE Photon. Technol. Lett. 16, 60–62 (2004)

    Article  ADS  Google Scholar 

  26. D.S. Lim, H.K. Lee, K.H. Kim, S.B. Kang, J.T. Ahn, M.Y. Jeon, Generation of multiorder Stokes and anti-Stokes lines in a Brillouin erbium-fiber laser with a Sagnac loop mirror. Opt. Lett. 23, 1671–1673 (1998)

    Article  ADS  Google Scholar 

  27. S.S. Wang, Z.F. Hu, Y.H. Li, L.M. Tong, All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors. Opt. Lett. 34, 253–255 (2009)

    Article  ADS  Google Scholar 

  28. M.A. Ummy, N. Madamopoulos, P. Lama, R. Dorsinville, Dual Sagnac loop mirror SOA-based widely tunable dual-output port fiber laser. Opt. Express 17, 14495–14501 (2009)

    Article  ADS  Google Scholar 

  29. M.A. Ummy, N. Madamopoulos, A. Joyo, M. Kouar, R. Dorsinville, Tunable multi-wavelength SOA based linear cavity dual-output port fiber laser using Lyot-Sagnac loop mirror. Opt. Express 19, 3202–3211 (2011)

    Article  ADS  Google Scholar 

  30. D.B. Mortimore, Fiber loop reflectors. J. of Lightwave Technol. 6, 1217–1224 (1988)

    Article  ADS  Google Scholar 

  31. S. Feng, Q. Mao, L. Shang, J.W. Lit, Reflectivity characteristics of the fiber loop mirror with a polarization controller. Opt. Commun. 277, 322–328 (2007)

    Article  ADS  Google Scholar 

  32. S. Klingebiel, F. Röser, B. Ortaç, J. Limpert, A. Tünnermann, Spectral beam combining of Yb-doped fiber lasers with high efficiency. J. Opt. Soc. Am. B 24, 1716–1720 (2007)

    Article  ADS  Google Scholar 

  33. V. Raab, R. Menzel, External resonator design for high-power laser diodes that yields 400 mW of TEM00 power. Opt. Lett. 27, 167–169 (2002)

    Article  ADS  Google Scholar 

  34. C.J. Corcoran, R.H. Rediker, Operation of five individual diode lasers as a coherent ensemble by fiber coupling into an external cavity. Appl. Phys. Lett. 59, 759–761 (1991)

    Article  ADS  Google Scholar 

  35. B. Liu, Y. Braiman, Coherent beam combining of high power broad-area laser diode array with near diffraction limited beam quality and high power conversion efficiency. Opt. Express 21, 31218–31228 (2013)

    Article  ADS  Google Scholar 

  36. V. Daneu, A. Sanchez, T.Y. Fan, H.K. Choi, G.W. Turner, C.C. Cook, Spectral beam combining of a broad-stripe diode laser array in an external cavity. Opt. Lett. 25, 405–407 (2000)

    Article  ADS  Google Scholar 

  37. T.H. Loftus, A. Liu, P.R. Hoffman, A.M. Thomas, M. Norsen, R. Royse, E. Honea, 522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality. Opt. Lett. 32, 349–351 (2007)

    Article  ADS  Google Scholar 

  38. T.Y. Fan, Laser beam combining for high-power, high-radiance sources. IEEE J. Sel. Topics Quantum Electron. 11, 567–577 (2005)

    Article  ADS  Google Scholar 

  39. S.J. Augst, A.K. Goyal, R.L. Aggarwal, T.Y. Fan, A. Sanchez, Wavelength beam combining of ytterbium fiber lasers. Opt. Lett. 28, 331–333 (2003)

    Article  ADS  Google Scholar 

  40. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E.T. Have, K. Ludewigt, M. Jung, 2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers. Opt. Express 17, 1178–1183 (2009)

    Article  ADS  Google Scholar 

  41. P. Sprangle, A. Ting, J. Penano, R. Fischer, B. Hafizi, Incoherent combining and atmospheric propagation of high-power fiber lasers for directed-energy applications. IEEE J. Quantum Electron. 45, 138–148 (2009)

    Article  ADS  Google Scholar 

  42. D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, M. Vampouille, A. Barthélémy, Coherent combining of two Nd: YAG lasers in a Vernier–Michelson-type cavity. Appl. Phys. B 75, 503–507 (2002)

    Article  ADS  Google Scholar 

  43. G. Bloom, C. Larat, E. Lallier, M. Carras, X. Marcadet, Coherent combining of two quantum-cascade lasers in a Michelson cavity. Opt. Lett. 35, 1917–1919 (2010)

    Article  ADS  Google Scholar 

  44. D. Sabourdy, V. Kermène, A. Desfarges-Berthelemot, L. Lefort, A. Barthélémy, P. Even, D. Pureur, Efficient coherent combining of widely tunable fiber lasers. Opt. Express 11, 87–97 (2003)

    Article  ADS  Google Scholar 

  45. F. Jeux, A. Desfarges-Berthelemot, V. Kermène, A. Barthelemy, Experimental demonstration of passive coherent combining of fiber lasers by phase contrast filtering. Opt. Express 20, 28941–28946 (2012)

    Article  ADS  Google Scholar 

  46. V.A. Kozlov, J. Hernández-Cordero, T.F. Morse, All-fiber coherent beam combining of fiber lasers. Opt. Lett. 24, 1814–1816 (1999)

    Article  ADS  Google Scholar 

  47. D.S. Moon, B.H. Kim, A. Lin, G. Sun, W.T. Han, Y.G. Han, Y. Chung, Tunable multi-wavelength SOA fiber laser based on a Sagnac loop mirror using an elliptical core side-hole fiber. Opt. Express 15, 8371–8376 (2007)

    Article  ADS  Google Scholar 

  48. C.S. Kim, R.M. Sova, J.U. Kang, Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter. Opt. Commun. 218, 291–295 (2003)

    Article  ADS  Google Scholar 

  49. P.G. Zverev, T.T. Basiev, A.M. Prokhorov, Stimulated Raman scattering of laser radiation in Raman crystals. Opt. Mater. 11, 335–352 (1999)

    Article  ADS  Google Scholar 

  50. S.P. Smith, F. Zarinetchi, S. Ezekiel, Narrow-linewidth stimulated Brillouin fiber laser and applications. Opt. Lett. 16, 393–395 (1991)

    Article  ADS  Google Scholar 

  51. J.C. Yong, L. Thévenaz, B. Yoon Kim, Brillouin fiber laser pumped by a DFB laser diode. J. Lightwave Technol. 21, 546 (2003)

    Article  ADS  Google Scholar 

  52. A.J. Lowery, M. Premaratne, Design and simulation of a simple laser rangefinder using a semiconductor optical amplifier-detector. Opt. Express 13, 3647–3652 (2005)

    Article  ADS  Google Scholar 

  53. A.J. Lowery, M. Premaratne, Reduced component count optical delay discriminator using a semiconductor optical amplifier-detector. Opt. Express 13, 290–295 (2005)

    Article  ADS  Google Scholar 

  54. M. Premaratne, A.J. Lowery, Analytical characterization of SOA-based optical pulse delay discriminator. J. Lightwave Technol. 23, 2778–2787 (2005)

    Article  ADS  Google Scholar 

  55. N. Arez, M. Razaghi, Optical and logic gate implementation using four wave mixing in semiconductor optical amplifier for high speed optical communication systems, in International Conference Network and Electronics Engineering (IPCSIT), 2011, vol. 11

    Google Scholar 

  56. N. Das, M. Razaghi, R. Hosseini, Four-wave mixing in semiconductor optical amplifiers for high-speed communications, in 2012 5th International Conference on Computers and Devices for Communication (CODEC), IEEE (2012)

    Google Scholar 

  57. N.K. Das, Y. Yamayoshi, H. Kawaguchi, Analysis of basic four-wave mixing characteristics in a semiconductor optical amplifier by the finite-difference beam propagation method. IEEE J. Quantum Electron. 36, 1184–1192 (2000)

    Article  ADS  Google Scholar 

  58. H. Heidrich, Multifunctional photonic integrated circuits based on SOA and ring resonators, in Optical Fiber Communication Conference, Vol. 1 of 2003 OSA Technical Digest Series (Optical Society of America, 2003), paper TuG3

    Google Scholar 

  59. K. Sato, H. Toba, Reduction of mode partition noise by using semiconductor optical amplifiers. IEEE J. Sel. Topics Quantum Electron. 7, 328–333 (2001)

    Article  ADS  Google Scholar 

  60. K. Takano, K. Nakagawa, Y. Takahashi, H. Ito, Reduction of power fluctuation in pulsed lightwave frequency sweepers with SOA following EDFA. IEEE Photon. Technol. Lett. 19, 525–527 (2007)

    Article  ADS  Google Scholar 

  61. H. Bruesselbach, D.C. Jones, M.S. Mangir, M. Minden, J.L. Rogers, Self-organized coherence in fiber laser arrays. Opt. Lett. 30, 1339–1341 (2005)

    Article  ADS  Google Scholar 

  62. J. Lhermite, A. Desfarges-Berthelemot, V. Kermene, A. Barthelemy, Passive phase locking of an array of four fiber amplifiers by an all-optical feedback loop. Opt. Lett. 32, 1842–1844 (2007)

    Article  ADS  Google Scholar 

  63. B. Lei, Y. Feng, Phase locking of an array of three fiber lasers by an all-fiber coupling loop. Opt. Express 15, 17114–17119 (2007)

    Article  ADS  Google Scholar 

  64. M.A. Ummy, S. Bikorimana, N. Madamopoulos, R. Dorsinville, Beam combining of SOA-based bidirectional tunable fiber nested ring lasers with continuous tunability over the C-band at room temperature. J. Lightwave Technol. 34, 3703–3710 (2016)

    Article  ADS  Google Scholar 

  65. J.P. Cariou, B. Augere, M. Valla, Laser source requirements for coherent lidars based on fiber technology. ComptesRendus Phys. 7, 213–223 (2006)

    ADS  Google Scholar 

  66. A. Martinez-Ríos, G. Anzueto-Sanchez, R. Selvas-Aguilar, A.A.C. Guzman, D. Toral-Acosta, V. Guzman-Ramos, V.M. Duran-Ramirez, J.A. Guerrero-Viramontes, C.A. Calles-Arriaga, High sensitivity fiber laser temperature sensor. IEEE Sensors J. 5, 2399–2402 (2015)

    Article  ADS  Google Scholar 

  67. T.B. Pham, H. Bui, H.T. Le, V.H. Pham, Characteristics of the fiber laser sensor system based on etched-Bragg grating sensing probe for determination of the low nitrate concentration in water. Sensors 17, 7 (2016)

    Article  Google Scholar 

  68. H. Fu, D. Chen, Z. Cai, Fiber sensor systems based on fiber laser and microwave photonic technologies. Sensors 12, 5395–5419 (2012)

    Article  Google Scholar 

  69. N.S. Park, S.K. Chun, G.H. Han, C.S. Kim, Acousto-optic-based wavelength-comb-swept laser for extended displacement measurements. Sensors 17, 740 (2017)

    Article  Google Scholar 

  70. P.C. Peng, J.H. Lin, H.Y. Tseng, S. Chi, Intensity and wavelength-division multiplexing FBG sensor system using a tunable multiport fiber ring laser. IEEE Photon. Technol. Lett. 16, 230–232 (2004)

    Article  ADS  Google Scholar 

  71. F. Delorme, Widely tunable 1.55 μm lasers for wavelength-division-multiplexed optical fiber communications. IEEE J. Sel. Topics Quantum Electron. 34, 1706–1716 (1998)

    Article  ADS  Google Scholar 

  72. S.H. Yun, G.J. Tearney, J.F. de Boer, N. Iftimia, B.E. Bouma, High-speed optical frequency-domain imaging. Opt. Express 11, 2953–2963 (2003)

    Article  ADS  Google Scholar 

  73. E. Hemmer, A. Benayas, F. Légaré, F. Vetrone, Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm. Nanoscale Horiz. 1, 168–184 (2016)

    Article  ADS  Google Scholar 

  74. M.A. Ummy, S. Bikorimana, R. Dorsinville, Beam combining of SOA-based bidirectional tunable fiber compound-ring lasers with external reflectors, in Optics and Lasers Technology, 2017 5th International Conference on Photonics. PHOTOPTICS, 2017

    Google Scholar 

  75. G. Wang, L. Zhan, J. Liu, T. Zhang, J. Li, L. Zhang, J. Peng, L. Yi, Watt-level ultrahigh-optical signal-to-noise ratio single-longitudinal-mode tunable Brillouin fiber laser. Opt. Lett. 38, 19–21 (2013)

    Article  ADS  Google Scholar 

  76. Y. Luo, Y. Tang, J. Yang, Y. Wang, S. Wang, K. Tao, L. Zhan, J. Xu, High signal-to-noise ratio, single-frequency 2 μm Brillouin fiber laser. Opt. Lett. 39, 2626–2628 (2014)

    Article  ADS  Google Scholar 

  77. L.S. Yan, X.S. Yao, Y. Shi, A.E. Willner, Simultaneous monitoring of both optical signal-to-noise ratio and polarization-mode dispersion using polarization scrambling and polarization beam splitting. J. Lightwave Technol. 23, 3290 (2005)

    Article  ADS  Google Scholar 

  78. D. Kouznetsov, J. Bisson, A. Shirakawa, K. Ueda, Limits of coherent addition of lasers: simple estimate. Opt. Rev. 12, 445–447 (2005)

    Article  Google Scholar 

  79. W. Chang, T. Wu, H. Winful, A. Galvanauskas, Array size scalability of passively coherently phased fiber laser arrays. Opt. Exp. 18, 9634–9642 (2010)

    Article  ADS  Google Scholar 

  80. S. Sivaramakrishnan, W. Chang, A. Galvanauskas, H.G. Winful, Dynamics of passively phased ring oscillator fiber laser arrays. IEEE J. Quant. Electron. 51, 1–9 (2015)

    Article  Google Scholar 

  81. E.J. Bochove, S.A. Shakir, Analysis of a spatial-filtering passive fiber laser beam combining system. IEEE J. Sel. Top. Quant. Electron. 15(320–327), 78 (2009)

    Google Scholar 

  82. S. Barua, N. Das, S. Nordholm, M. Razaghi, Comparison of pulse propagation and gain saturation characteristics among different input pulse shapes in semiconductor optical amplifiers. Opt. Commun. 359, 73–78 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad A. Ummy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ummy, M.A., Bikorimana, S., Hossain, A., Dorsinville, R. (2019). Passive Beam Combining for the Development of High Power SOA-Based Tunable Fiber Compound-Ring Lasers Using Low Power Optical Components. In: Ribeiro, P., Andrews, D., Raposo, M. (eds) Optics, Photonics and Laser Technology 2017. Springer Series in Optical Sciences, vol 222. Springer, Cham. https://doi.org/10.1007/978-3-030-12692-6_10

Download citation

Publish with us

Policies and ethics