Skip to main content

Test-Cost-Sensitive Quick Reduct

  • Conference paper
  • First Online:
Fuzzy Logic and Applications (WILF 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11291))

Included in the following conference series:

Abstract

In real-world applications, the data gathering process is necessarily bounded by costs in terms of money, time or resources that need to be spent in order to sample a sufficient amount of good quality data. From this point of view Feature Selection (FS) is essential to reduce the total sampling cost while trying to keep the information content of sampled data unaltered, and Rough Sets (RS) offer a natural representation of FS in terms of the so-called reducts. In this paper a modified version of the Quick Reduct (QR) algorithm is proposed, where the criterium to add features to the reduct accounts also for the costs of the features. Exploiting granular computing and the indiscernibility principle, the Test-Cost-Sensitive Quick Reduct (TCSQR) here proposed efficiently derives a close-to-optimal subset of informative and inexpensive features. Promising experimental results have been obtained on three different cost scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bellman, R.: Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton (1961)

    Book  Google Scholar 

  2. Camastra, F.: Data dimensionality estimation methods: a survey. Pattern Recogn. 36(12), 2945–2954 (2003)

    Article  Google Scholar 

  3. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014). https://doi.org/10.1016/j.compeleceng.2013.11.024. http://www.sciencedirect.com/science/article/pii/S0045790613003066. 40th- year commemorative issue

    Article  Google Scholar 

  4. Ding, S., Zhu, H., Jia, W., Su, C.: A survey on feature extraction for pattern recognition. Artif. Intell. Rev. 37(3), 169–180 (2012)

    Article  Google Scholar 

  5. Ferone, A., Petrosino, A.: A rough fuzzy perspective to dimensionality reduction. In: Masulli, F., Petrosino, A., Rovetta, S. (eds.) CHDD 2012. LNCS, vol. 7627, pp. 134–147. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48577-4_9

    Chapter  Google Scholar 

  6. He, H., Min, F.: Accumulated cost based test-cost-sensitive attribute reduction. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS (LNAI), vol. 6743, pp. 244–247. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21881-1_39

    Chapter  Google Scholar 

  7. Jensen, R., Tuson, A., Shen, Q.: Finding rough and fuzzy-rough set reducts with SAT. Inf. Sci. 255, 100–120 (2014)

    Article  MathSciNet  Google Scholar 

  8. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  9. Ling, C.X., Sheng, V.S.: Cost-sensitive learning and the class imbalanced problem. In: Sammut, C. (eds.) Encyclopedia of Machine Learning, pp. 171–179. Springer (2007)

    Google Scholar 

  10. Maratea, A., Petrosino, A., Manzo, M.: Adjusted f-measure and kernel scaling for imbalanced data learning. Inf. Sci. 257, 331–341 (2014)

    Article  Google Scholar 

  11. Min, F., He, H., Qian, Y., Zhu, W.: Test-cost-sensitive attribute reduction. Inf. Sci. 181(22), 4928–4942 (2011)

    Article  Google Scholar 

  12. Min, F., Hu, Q., Zhu, W.: Feature selection with test cost constraint. Int. J. Approx. Reason. 55(1, Part 2), 167–179 (2014). Special issue on Decision-Theoretic Rough Sets

    Article  MathSciNet  Google Scholar 

  13. Min, F., Zhu, W.: Optimal sub-reducts with test cost constraint. In: Yao, J.T., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS (LNAI), vol. 6954, pp. 57–62. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24425-4_10

    Chapter  Google Scholar 

  14. Pan, G., Min, F., Zhu, W.: A genetic algorithm to the minimal test cost reduct problem. In: 2011 IEEE International Conference on Granular Computing, pp. 539–544, November 2011

    Google Scholar 

  15. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)

    Article  Google Scholar 

  16. Pawlak, Z.: Granularity of knowledge, indiscernibility and rough sets. In: Proceedings of IEEE International Conference on Fuzzy Systems, pp. 106–110 (1998)

    Google Scholar 

  17. Petrosino, A., Ferone, A.: Feature discovery through hierarchies of rough fuzzy sets. In: Pedrycz, W., Chen, S.M. (eds.) Granular Computing and Intelligent Systems: Design with Information Granules of Higher Order and Higher Type. ISRL, pp. 57–73. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19820-5_4

    Chapter  Google Scholar 

  18. Susmaga, R.: Computation of minimal cost reducts. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1999. LNCS, vol. 1609, pp. 448–456. Springer, Heidelberg (1999). https://doi.org/10.1007/BFb0095132

    Chapter  Google Scholar 

  19. Thai-Nghe, N., Gantner, Z., Schmidt-Thieme, L.: Cost-sensitive learning methods for imbalanced data. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2010)

    Google Scholar 

  20. Vapnik, V.: Statistical Learning Theory. Wiley, Hoboken (1998)

    MATH  Google Scholar 

  21. Xu, C., Min, F.: Weighted reduction for decision tables. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds.) FSKD 2006. LNCS (LNAI), vol. 4223, pp. 246–255. Springer, Heidelberg (2006). https://doi.org/10.1007/11881599_28

    Chapter  Google Scholar 

  22. Yao, J.T., Vasilakos, A.V., Pedrycz, W.: Granular computing: perspectives and challenges. IEEE Trans. Cybern. 43(6), 1977–1989 (2013)

    Article  Google Scholar 

  23. Yao, J.: A ten-year review of granular computing. In: IEEE International Conference on Granular Computing, GRC 2007, pp. 734–734. IEEE (2007)

    Google Scholar 

  24. Yao, Y., Zhao, Y., Wang, J.: On reduct construction algorithms. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 297–304. Springer, Heidelberg (2006). https://doi.org/10.1007/11795131_43

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support for this research through “FFABR”, granted by MIUR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Maratea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferone, A., Georgiev, T., Maratea, A. (2019). Test-Cost-Sensitive Quick Reduct. In: Fullér, R., Giove, S., Masulli, F. (eds) Fuzzy Logic and Applications. WILF 2018. Lecture Notes in Computer Science(), vol 11291. Springer, Cham. https://doi.org/10.1007/978-3-030-12544-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12544-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12543-1

  • Online ISBN: 978-3-030-12544-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics