Skip to main content

Fuzzy Similarity-Based Hierarchical Clustering for Atmospheric Pollutants Prediction

  • Conference paper
  • First Online:
Fuzzy Logic and Applications (WILF 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11291))

Included in the following conference series:

Abstract

This work focuses on models selection in a multi-model air quality ensemble system. The models are operational long-range transport and dispersion models used for the real-time simulation of pollutant dispersion or the accidental release of radioactive nuclides in the atmosphere. In this context, a methodology based on temporal hierarchical agglomeration is introduced. It uses fuzzy similarity relations combined by a transitive consensus matrix. The methodology is adopted for individuating a subset of models that best characterize the predicted atmospheric pollutants from the ETEX-1 experiment and discard redundant information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ascione, I., Giunta, G., Mariani, P., Montella, R., Riccio, A.: A grid computing based virtual laboratory for environmental simulations. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 1085–1094. Springer, Heidelberg (2006). https://doi.org/10.1007/11823285_114

    Chapter  Google Scholar 

  2. Ciaramella, A., et al.: Interactive data analysis and clustering of genomic data. Neural Netw. 21(2–3), 368–378 (2008)

    Article  Google Scholar 

  3. Napolitano, F., Raiconi, G., Tagliaferri, R., Ciaramella, A., Staiano, A., Miele, G.: Clustering and visualization approaches for human cell cycle gene expression data analysis. Int. J. Approximate Reasoning 47(1), 70–84 (2008)

    Article  Google Scholar 

  4. Ciaramella, A., Giunta, G., Riccio, A., Galmarini, S.: Independent data model selection for ensemble dispersion forecasting. In: Okun, O., Valentini, G. (eds.) Applications of Supervised and Unsupervised Ensemble Methods. SCI, vol. 245, pp. 213–231. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03999-7_12

    Chapter  Google Scholar 

  5. Ciaramella, A., Pedrycz, W., Tagliaferri, R.: The genetic development of ordinal sums. Fuzzy Sets Syst. 151, 303–325 (2005)

    Article  MathSciNet  Google Scholar 

  6. Galmarini, S., Bianconi, R., Bellasio, R., Graziani, G.: Forecasting consequences of accidental releases from ensemble dispersion modelling. J. Environ. Radioactiv. 57, 203–219 (2001)

    Article  Google Scholar 

  7. Galmarini, S., et al.: Ensemble dispersion forecasting, part I: concept, approach and indicators. Atmos. Environ. 38, 4607–4617 (2004)

    Article  Google Scholar 

  8. Galmarini, S., et al.: Ensemble dispersion forecasting? Part II: application and evaluation. Atmos. Environ. 38, 4619–4632 (2004)

    Article  Google Scholar 

  9. Girardi, F., et al.: The ETEX project. EUR Report 181–43 EN, 108 pp. Office for official publications of the European Communities, Luxembourg (1998)

    Google Scholar 

  10. Giunta, G., Montella, R., Mariani, P., Riccio, A.: Modeling and computational issues for air/water quality problems: a grid computing approach. Nuovo Cimento C Geophys. Space Phys. 28, 215–224 (2005)

    Google Scholar 

  11. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2001)

    MATH  Google Scholar 

  12. Meyer, H.D., Naessens, H., Baets, B.D.: Algorithms for computing the min-transitive closure and associated partition tree of a symmetric fuzzy relation. Eur. J. Oper. Res. 155(1), 226–238 (2004)

    Article  MathSciNet  Google Scholar 

  13. Montella, R., Giunta, G., Riccio, A.: Using grid computing based components in on demand environmental data delivery. In: Proceedings of the Second Workshop on Use of P2P, GRID and Agents for the Development of Content Networks, UPGRADE-CN 2007, pp. 81–86 (2007)

    Google Scholar 

  14. Mirzaei, A., Rahmati, M.: A novel hierarchical-clustering-combination scheme based on fuzzy-similarity relations. IEEE Trans. Fuzzy Syst. 18(1), 27–39 (2010)

    Article  Google Scholar 

  15. Potempski, S., Galmarini, S., Riccio, A., Giunta, G.: Bayesian model averaging for emergency response atmospheric dispersion multimodel ensembles: is it really better? How many data are needed? Are the weights portable? J. Geophys. Res. 115 (2010). https://doi.org/10.1029/2010JD014210

  16. Potempski, S., Galmarini, S.: Est modus in rebus: analytical properties of multi-model ensembles. Atmos. Chem. Phys. 9(24), 9471–9489 (2009)

    Article  Google Scholar 

  17. Riccio, A., Giunta, G., Galmarini, S.: Seeking for the rational basis of the median model: the optimal combination of multi-model ensemble results. Atmos. Chem. Phys. 7, 6085–6098 (2007)

    Article  Google Scholar 

  18. Riccio, A., Ciaramella, A., Giunta, G., Galmarini, S., Solazzo, E., Potempski, S.: On the systematic reduction of data complexity in multimodel atmospheric dispersion ensemble modeling. J. Geophys. Res. 117(D5), D05314 (2012)

    Article  Google Scholar 

  19. Sessa, S., Tagliaferri, R., Longo, G., Ciaramella, A., Staiano, A.: Fuzzy similarities in stars/galaxies classification. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 494–4962 (2003)

    Google Scholar 

  20. Solazzo, E., Riccio, A., Van Dingenen, R., Valentini, L., Galmarini, S.: Evaluation and uncertainty estimation of the impact of air quality modelling on crop yields and premature deaths using a multi-model ensemble. Sci. Total Environ. 633, 1437–1452 (2018)

    Article  Google Scholar 

  21. Turunen, E.: Mathematics Behind Fuzzy Logic. Advances in Soft Computing. Springer, Heidelberg (1999)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the University of Naples Parthenope (Sostegno alla ricerca individuale per il triennio 2016–2018 project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ciaramella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Camastra, F., Ciaramella, A., Son, L.H., Riccio, A., Staiano, A. (2019). Fuzzy Similarity-Based Hierarchical Clustering for Atmospheric Pollutants Prediction. In: Fullér, R., Giove, S., Masulli, F. (eds) Fuzzy Logic and Applications. WILF 2018. Lecture Notes in Computer Science(), vol 11291. Springer, Cham. https://doi.org/10.1007/978-3-030-12544-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12544-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12543-1

  • Online ISBN: 978-3-030-12544-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics