Skip to main content

Evolution of Excitation-Contraction Coupling

  • Chapter
  • First Online:
Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1131))

Abstract

In mammalian cardiomyocytes, Ca2+ influx through L-type voltage-gated Ca2+ channels (VGCCs) is amplified by release of Ca2+ via type 2 ryanodine receptors (RyR2) in the sarcoplasmic reticulum (SR): a process termed Ca2+-induced Ca2+-release (CICR). In mammalian skeletal muscles, VGCCs play a distinct role as voltage-sensors, physically interacting with RyR1 channels to initiate Ca2+ release in a mechanism termed depolarisation-induced Ca2+-release (DICR). In the current study, we surveyed the genomes of animals and their close relatives, to explore the evolutionary history of genes encoding three proteins pivotal for ECC: L-type VGCCs; RyRs; and a protein family that anchors intracellular organelles to plasma membranes, namely junctophilins (JPHs). In agreement with earlier studies, we find that non-vertebrate eukaryotes either lack VGCCs, RyRs and JPHs; or contain a single homologue of each protein. Furthermore, the molecular features of these proteins thought to be essential for DICR are only detectable within vertebrates and not in any other taxonomic group. Consistent with earlier physiological and ultrastructural observations, this suggests that CICR is the most basal form of ECC and that DICR is a vertebrate innovation. This development was accompanied by the appearance of multiple homologues of RyRs, VGCCs and junctophilins in vertebrates, thought to have arisen by ‘whole genome replication’ mechanisms. Subsequent gene duplications and losses have resulted in distinct assemblies of ECC components in different vertebrate clades, with striking examples being the apparent absence of RyR2 from amphibians, and additional duplication events for all three ECC proteins in teleost fish. This is consistent with teleosts possessing the most derived mode of DICR, with their Cav1.1 VGCCs completely lacking in Ca2+ channel activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cunningham JA, Liu AG, Bengtson S, Donoghue PC (2017) The origin of animals: can molecular clocks and the fossil record be reconciled? BioEssays 39(1):1–12. https://doi.org/10.1002/bies.201600120

    Article  PubMed  Google Scholar 

  2. Erwin DH (2015) Early metazoan life: divergence, environment and ecology. Philos Trans R Soc Lond Ser B Biol Sci 370(1684):20150036. https://doi.org/10.1098/rstb.2015.0036

    Article  Google Scholar 

  3. Bosch TCG, Klimovich A, Domazet-Loso T, Grunder S, Holstein TW, Jekely G, Miller DJ, Murillo-Rincon AP, Rentzsch F, Richards GS, Schroder K, Technau U, Yuste R (2017) Back to the basics: cnidarians start to fire. Trends Neurosci 40(2):92–105. https://doi.org/10.1016/j.tins.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  4. Seipel K, Schmid V (2005) Evolution of striated muscle: jellyfish and the origin of triploblasty. Dev Biol 282(1):14–26. https://doi.org/10.1016/j.ydbio.2005.03.032

    Article  CAS  PubMed  Google Scholar 

  5. McGuigan K, Phillips PC, Postlethwait JH (2004) Evolution of sarcomeric myosin heavy chain genes: evidence from fish. Mol Biol Evol 21(6):1042–1056. https://doi.org/10.1093/molbev/msh103

    Article  CAS  PubMed  Google Scholar 

  6. Brunet T, Arendt D (2016) From damage response to action potentials: early evolution of neural and contractile modules in stem eukaryotes. Philos Trans R Soc Lond Ser B Biol Sci 371(1685):20150043. https://doi.org/10.1098/rstb.2015.0043

    Article  CAS  Google Scholar 

  7. Steinmetz PR, Kraus JE, Larroux C, Hammel JU, Amon-Hassenzahl A, Houliston E, Worheide G, Nickel M, Degnan BM, Technau U (2012) Independent evolution of striated muscles in cnidarians and bilaterians. Nature 487(7406):231–234. https://doi.org/10.1038/nature11180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258(5089):1812–1815

    Article  CAS  PubMed  Google Scholar 

  9. Parekh AB (2011) Decoding cytosolic Ca2+ oscillations. Trends Biochem Sci 36(2):78–87. https://doi.org/10.1016/j.tibs.2010.07.013

    Article  CAS  PubMed  Google Scholar 

  10. Di Biase V, Franzini-Armstrong C (2005) Evolution of skeletal type e-c coupling: a novel means of controlling calcium delivery. J Cell Biol 171(4):695–704. https://doi.org/10.1083/jcb.200503077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shiels HA, Galli GL (2014) The sarcoplasmic reticulum and the evolution of the vertebrate heart. Physiology 29(6):456–469. https://doi.org/10.1152/physiol.00015.2014

    Article  CAS  PubMed  Google Scholar 

  12. Catterall WA, Striessnig J, Snutch TP, Perez-Reyes E, International Union of P (2003) International Union of Pharmacology. XL. Compendium of voltage-gated ion channels: calcium channels. Pharmacol Rev 55(4):579–581. https://doi.org/10.1124/pr.55.4.8

    Article  CAS  PubMed  Google Scholar 

  13. Bers DM, Perez-Reyes E (1999) Ca channels in cardiac myocytes: structure and function in Ca influx and intracellular Ca release. Cardiovasc Res 42(2):339–360

    Article  CAS  PubMed  Google Scholar 

  14. Campiglio M, Flucher BE (2015) The role of auxiliary subunits for the functional diversity of voltage-gated calcium channels. J Cell Physiol 230(9):2019–2031. https://doi.org/10.1002/jcp.24998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Endo M (1977) Calcium release from the sarcoplasmic reticulum. Physiol Rev 57(1):71–108. https://doi.org/10.1152/physrev.1977.57.1.71

    Article  CAS  PubMed  Google Scholar 

  16. Franzini-Armstrong C, Protasi F, Ramesh V (1999) Shape, size, and distribution of Ca2+ release units and couplons in skeletal and cardiac muscles. Biophys J 77(3):1528–1539. https://doi.org/10.1016/S0006-3495(99)77000-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hong T, Shaw RM (2017) Cardiac T-tubule microanatomy and function. Physiol Rev 97(1):227–252. https://doi.org/10.1152/physrev.00037.2015

    Article  PubMed  Google Scholar 

  18. Dibb KM, Clarke JD, Eisner DA, Richards MA, Trafford AW (2013) A functional role for transverse (t-) tubules in the atria. J Mol Cell Cardiol 58:84–91. https://doi.org/10.1016/j.yjmcc.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  19. Orchard C, Brette F (2008) t-Tubules and sarcoplasmic reticulum function in cardiac ventricular myocytes. Cardiovasc Res 77(2):237–244. https://doi.org/10.1093/cvr/cvm002

    Article  CAS  PubMed  Google Scholar 

  20. Perni S, Iyer VR, Franzini-Armstrong C (2012) Ultrastructure of cardiac muscle in reptiles and birds: optimizing and/or reducing the probability of transmission between calcium release units. J Muscle Res Cell Motil 33(2):145–152. https://doi.org/10.1007/s10974-012-9297-6

    Article  CAS  PubMed  Google Scholar 

  21. Brandt NR, Kawamoto RM, Caswell AH (1985) Dihydropyridine binding sites on transverse tubules isolated from triads of rabbit skeletal muscle. J Recept Res 5(2–3):155–170

    Article  CAS  PubMed  Google Scholar 

  22. Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol 107(6 Pt 2):2587–2600

    Article  CAS  PubMed  Google Scholar 

  23. Bertocchini F, Ovitt CE, Conti A, Barone V, Scholer HR, Bottinelli R, Reggiani C, Sorrentino V (1997) Requirement for the ryanodine receptor type 3 for efficient contraction in neonatal skeletal muscles. EMBO J 16(23):6956–6963. https://doi.org/10.1093/emboj/16.23.6956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Conti A, Reggiani C, Sorrentino V (2005) Selective expression of the type 3 isoform of ryanodine receptor Ca2+ release channel (RyR3) in a subset of slow fibers in diaphragm and cephalic muscles of adult rabbits. Biochem Biophys Res Commun 337(1):195–200. https://doi.org/10.1016/j.bbrc.2005.09.027

    Article  CAS  PubMed  Google Scholar 

  25. Daniels RE, Haq KT, Miller LS, Chia EW, Miura M, Sorrentino V, McGuire JJ, Stuyvers BD (2017) Cardiac expression of ryanodine receptor subtype 3; a strategic component in the intracellular Ca2+ release system of Purkinje fibers in large mammalian heart. J Mol Cell Cardiol 104:31–42. https://doi.org/10.1016/j.yjmcc.2017.01.011

    Article  CAS  PubMed  Google Scholar 

  26. Meissner G (2017) The structural basis of ryanodine receptor ion channel function. J Gen Physiol 149(12):1065–1089. https://doi.org/10.1085/jgp.201711878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Perni S, Lavorato M, Beam KG (2017) De novo reconstitution reveals the proteins required for skeletal muscle voltage-induced Ca2+ release. Proc Natl Acad Sci U S A 114(52):13822–13827. https://doi.org/10.1073/pnas.1716461115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K (2000) Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell 6(1):11–22

    CAS  PubMed  Google Scholar 

  29. Somlyo AV, Siegman MJ (2012) Smooth muscle myocyte ultrastructure and contractility. In: Hill JA, Olson EN (eds) Muscle. Boston/Waltham, Academic, pp 1117–1132. https://doi.org/10.1016/B978-0-12-381510-1.00083-1

    Chapter  Google Scholar 

  30. Catterall WA (2010) Signaling complexes of voltage-gated sodium and calcium channels. Neurosci Lett 486(2):107–116. https://doi.org/10.1016/j.neulet.2010.08.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pozdnyakov I, Matantseva O, Skarlato S (2018) Diversity and evolution of four-domain voltage-gated cation channels of eukaryotes and their ancestral functional determinants. Sci Rep 8(1):3539. https://doi.org/10.1038/s41598-018-21897-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dolphin AC (2016) Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. J Physiol 594(19):5369–5390. https://doi.org/10.1113/JP272262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moran Y, Zakon HH (2014) The evolution of the four subunits of voltage-gated calcium channels: ancient roots, increasing complexity, and multiple losses. Genome Biol Evol 6(9):2210–2217. https://doi.org/10.1093/gbe/evu177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moran Y, Barzilai MG, Liebeskind BJ, Zakon HH (2015) Evolution of voltage-gated ion channels at the emergence of Metazoa. J Exp Biol 218(Pt 4):515–525. https://doi.org/10.1242/jeb.110270

    Article  PubMed  Google Scholar 

  35. Jeziorski MC, Greenberg RM, Anderson PA (2000) The molecular biology of invertebrate voltage-gated Ca2+ channels. J Exp Biol 203(Pt 5):841–856

    CAS  PubMed  Google Scholar 

  36. Senatore A, Raiss H, Le P (2016) Physiology and evolution of voltage-gated calcium channels in early diverging animal phyla: cnidaria, placozoa, porifera and ctenophora. Front Physiol 7:481. https://doi.org/10.3389/fphys.2016.00481

    Article  PubMed  PubMed Central  Google Scholar 

  37. Whelan NV, Kocot KM, Moroz LL, Halanych KM (2015) Error, signal, and the placement of Ctenophora sister to all other animals. Proc Natl Acad Sci U S A 112(18):5773–5778. https://doi.org/10.1073/pnas.1503453112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schierwater B, de Jong D, Desalle R (2009) Placozoa and the evolution of Metazoa and intrasomatic cell differentiation. Int J Biochem Cell Biol 41(2):370–379. https://doi.org/10.1016/j.biocel.2008.09.023

    Article  CAS  PubMed  Google Scholar 

  39. Smith CL, Varoqueaux F, Kittelmann M, Azzam RN, Cooper B, Winters CA, Eitel M, Fasshauer D, Reese TS (2014) Novel cell types, neurosecretory cells, and body plan of the early-diverging metazoan Trichoplax adhaerens. Curr Biol 24(14):1565–1572. https://doi.org/10.1016/j.cub.2014.05.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mayorova TD, Smith CL, Hammar K, Winters CA, Pivovarova NB, Aronova MA, Leapman RD, Reese TS (2018) Cells containing aragonite crystals mediate responses to gravity in Trichoplax adhaerens (Placozoa), an animal lacking neurons and synapses. PLoS One 13(1):e0190905. https://doi.org/10.1371/journal.pone.0190905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Senatore A, Reese TS, Smith CL (2017) Neuropeptidergic integration of behavior in Trichoplax adhaerens, an animal without synapses. J Exp Biol 220(Pt 18):3381–3390. https://doi.org/10.1242/jeb.162396

    Article  PubMed  PubMed Central  Google Scholar 

  42. Smith CL, Abdallah S, Wong YY, Le P, Harracksingh AN, Artinian L, Tamvacakis AN, Rehder V, Reese TS, Senatore A (2017) Evolutionary insights into T-type Ca2+ channel structure, function, and ion selectivity from the Trichoplax adhaerens homologue. J Gen Physiol 149(4):483–510. https://doi.org/10.1085/jgp.201611683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Paniagua R, Royuela M, Garcia-Anchuelo RM, Fraile B (1996) Ultrastructure of invertebrate muscle cell types. Histol Histopathol 11(1):181–201

    CAS  PubMed  Google Scholar 

  44. Yoshida M, Sugimoto A, Ohshima Y, Takeshima H (2001) Important role of junctophilin in nematode motor function. Biochem Biophys Res Commun 289(1):234–239. https://doi.org/10.1006/bbrc.2001.5951

    Article  CAS  PubMed  Google Scholar 

  45. Jospin M, Jacquemond V, Mariol MC, Segalat L, Allard B (2002) The L-type voltage-dependent Ca2+ channel EGL-19 controls body wall muscle function in Caenorhabditis elegans. J Cell Biol 159(2):337–348. https://doi.org/10.1083/jcb.200203055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee RY, Lobel L, Hengartner M, Horvitz HR, Avery L (1997) Mutations in the alpha1 subunit of an L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans. EMBO J 16(20):6066–6076. https://doi.org/10.1093/emboj/16.20.6066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Takekura H, Franzini-Armstrong C (2002) The structure of Ca2+ release units in arthropod body muscle indicates an indirect mechanism for excitation-contraction coupling. Biophys J 83(5):2742–2753. https://doi.org/10.1016/S0006-3495(02)75284-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hara Y, Koganezawa M, Yamamoto D (2015) The Dmca1D channel mediates Ca2+ inward currents in Drosophila embryonic muscles. J Neurogenet 29(2–3):117–123. https://doi.org/10.3109/01677063.2015.1054991

    Article  CAS  PubMed  Google Scholar 

  49. Lin N, Badie N, Yu L, Abraham D, Cheng H, Bursac N, Rockman HA, Wolf MJ (2011) A method to measure myocardial calcium handling in adult Drosophila. Circ Res 108(11):1306–1315. https://doi.org/10.1161/CIRCRESAHA.110.238105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Krizanova O, Novotova M, Zachar J (1990) Characterization of DHP binding protein in crayfish striated muscle. FEBS Lett 267(2):311–315

    Article  CAS  PubMed  Google Scholar 

  51. Erxleben C, Rathmayer W (1997) A dihydropyridine-sensitive voltage-dependent calcium channel in the sarcolemmal membrane of crustacean muscle. J Gen Physiol 109(3):313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Findsen A, Overgaard J, Pedersen TH (2016) Reduced L-type Ca2+ current and compromised excitability induce loss of skeletal muscle function during acute cooling in locust. J Exp Biol 219(Pt 15):2340–2348. https://doi.org/10.1242/jeb.137604

    Article  PubMed  Google Scholar 

  53. Monterrubio J, Lizardi L, Zuazaga C (2000) Silent calcium channels in skeletal muscle fibers of the crustacean Atya lanipes. J Membr Biol 173(1):9–17

    Article  CAS  PubMed  Google Scholar 

  54. Bonilla M, Garcia MC, Orkand PM, Zuazaga C (1992) Ultrastructural and mechanical properties of electrically inexcitable skeletal muscle fibers of the crustacean Atya lanipes. Tissue Cell 24(4):525–535

    Article  CAS  PubMed  Google Scholar 

  55. Pennec JP, Talarmin H, Droguet M, Giroux-Metges MA, Gioux M, Dorange G (2004) Characterization of the voltage-activated currents in cultured atrial myocytes isolated from the heart of the common oyster Crassostrea gigas. J Exp Biol 207(Pt 22):3935–3944. https://doi.org/10.1242/jeb.01221

    Article  CAS  PubMed  Google Scholar 

  56. Yeoman MS, Brezden BL, Benjamin PR (1999) LVA and HVA Ca2+ currents in ventricular muscle cells of the Lymnaea heart. J Neurophysiol 82(5):2428–2440. https://doi.org/10.1152/jn.1999.82.5.2428

    Article  CAS  PubMed  Google Scholar 

  57. Senatore A, Boone A, Lam S, Dawson TF, Zhorov B, Spafford JD (2011) Mapping of dihydropyridine binding residues in a less sensitive invertebrate L-type calcium channel (LCa v 1). Channels (Austin) 5(2):173–187. https://doi.org/10.4161/chan.5.2.15141

    Article  CAS  Google Scholar 

  58. Huang Z, Ishii Y, Watari T, Liu H, Miyake S, Suzaki T, Tsuchiya T (2005) Sources of activator calcium ions in the contraction of smooth muscles in Aplysia kurodai. Zool Sci 22(8):923–932. https://doi.org/10.2108/zsj.22.923

    Article  CAS  Google Scholar 

  59. Rokni D, Hochner B (2002) Ionic currents underlying fast action potentials in the obliquely striated muscle cells of the octopus arm. J Neurophysiol 88(6):3386–3397. https://doi.org/10.1152/jn.00383.2002

    Article  CAS  PubMed  Google Scholar 

  60. Cavey MJ, Wood RL (1981) Specializations for excitation-contraction coupling in the podial retractor cells of the starfish Stylasterias forreri. Cell Tissue Res 218(3):475–485

    Article  CAS  PubMed  Google Scholar 

  61. Hill RB (2001) Role of Ca2+ in excitation-contraction coupling in echinoderm muscle: comparison with role in other tissues. J Exp Biol 204(Pt 5):897–908

    CAS  PubMed  Google Scholar 

  62. Granados-Gonzalez G, Mendoza-Lujambio I, Rodriguez E, Galindo BE, Beltran C, Darszon A (2005) Identification of voltage-dependent Ca2+ channels in sea urchin sperm. FEBS Lett 579(29):6667–6672. https://doi.org/10.1016/j.febslet.2005.10.035

    Article  CAS  PubMed  Google Scholar 

  63. Peachey LD (1961) Structure of the longitudinal body muscles of amphioxus. J Biophys Biochem Cytol 10(4 Suppl):159–176

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hagiwara S, Henkart MP, Kidokoro Y (1971) Excitation-contraction coupling in amphioxus muscle cells. J Physiol 219(1):233–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Benterbusch R, Herberg FW, Melzer W, Thieleczek R (1992) Excitation-contraction coupling in a pre-vertebrate twitch muscle: the myotomes of Branchiostoma lanceolatum. J Membr Biol 129(3):237–252

    Article  CAS  PubMed  Google Scholar 

  66. Melzer W (1982) Twitch activation in Ca2+ -free solutions in the myotomes of the lancelet (Branchiostoma lanceolatum). Eur J Cell Biol 28(2):219–225

    CAS  PubMed  Google Scholar 

  67. Okamura Y, Izumi-Nakaseko H, Nakajo K, Ohtsuka Y, Ebihara T (2003) The ascidian dihydropyridine-resistant calcium channel as the prototype of chordate L-type calcium channel. Neurosignals 12(3):142–158. https://doi.org/10.1159/000072161

    Article  CAS  PubMed  Google Scholar 

  68. Inoue I, Tsutsui I, Bone Q (2002) Excitation-contraction coupling in isolated locomotor muscle fibres from the pelagic tunicate Doliolum which lack both sarcoplasmic reticulum and transverse tubular system. J Comp Physiol B 172(6):541–546. https://doi.org/10.1007/s00360-002-0280-1

    Article  CAS  PubMed  Google Scholar 

  69. Schiaffino S, Nunzi MG, Burighel P (1976) T system in ascidian muscle: organization of the sarcotubular system in the caudal muscle cells of Botryllus schlosseri tadpole larvae. Tissue Cell 8(1):101–110

    Article  CAS  PubMed  Google Scholar 

  70. Ohno S (1993) Patterns in genome evolution. Curr Opin Genet Dev 3(6):911–914

    Article  CAS  PubMed  Google Scholar 

  71. Caputo Barucchi V, Giovannotti M, Nisi Cerioni P, Splendiani A (2013) Genome duplication in early vertebrates: insights from agnathan cytogenetics. Cytogenet Genome Res 141(2–3):80–89. https://doi.org/10.1159/000354098

    Article  CAS  PubMed  Google Scholar 

  72. Inoue I, Tsutsui I, Bone Q (2002) Excitation-contraction coupling in skeletal and caudal heart muscle of the hagfish Eptatretus burgeri Girard. J Exp Biol 205(Pt 22):3535–3541

    PubMed  Google Scholar 

  73. Inoue I, Tsutsui I, Bone Q, Brown ER (1994) Evolution of skeletal muscle excitation-contraction coupling and the appearance of dihydropyridine-sensitive intramembrane charge movement. Proc R Soc London Ser B Biol Sci 255(1343):181–187

    Article  CAS  Google Scholar 

  74. Protasi F, Paolini C, Nakai J, Beam KG, Franzini-Armstrong C, Allen PD (2002) Multiple regions of RyR1 mediate functional and structural interactions with alpha(1S)-dihydropyridine receptors in skeletal muscle. Biophys J 83(6):3230–3244. https://doi.org/10.1016/S0006-3495(02)75325-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dayal A, Schrotter K, Pan Y, Fohr K, Melzer W, Grabner M (2017) The Ca2+ influx through the mammalian skeletal muscle dihydropyridine receptor is irrelevant for muscle performance. Nat Commun 8(1):475. https://doi.org/10.1038/s41467-017-00629-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Glasauer SM, Neuhauss SC (2014) Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Gen Genomics 289(6):1045–1060. https://doi.org/10.1007/s00438-014-0889-2

    Article  CAS  Google Scholar 

  77. Schredelseker J, Shrivastav M, Dayal A, Grabner M (2010) Non-Ca2+-conducting Ca2+ channels in fish skeletal muscle excitation-contraction coupling. Proc Natl Acad Sci U S A 107(12):5658–5663. https://doi.org/10.1073/pnas.0912153107

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, Hvidsten TR, Leong JS, Minkley DR, Zimin A, Grammes F, Grove H, Gjuvsland A, Walenz B, Hermansen RA, von Schalburg K, Rondeau EB, Di Genova A, Samy JK, Olav Vik J, Vigeland MD, Caler L, Grimholt U, Jentoft S, Vage DI, de Jong P, Moen T, Baranski M, Palti Y, Smith DR, Yorke JA, Nederbragt AJ, Tooming-Klunderud A, Jakobsen KS, Jiang X, Fan D, Hu Y, Liberles DA, Vidal R, Iturra P, Jones SJ, Jonassen I, Maass A, Omholt SW, Davidson WS (2016) The Atlantic salmon genome provides insights into rediploidization. Nature 533(7602):200–205. https://doi.org/10.1038/nature17164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schrotter K, Dayal A, Grabner M (2017) The mammalian skeletal muscle DHPR has larger Ca2+ conductance and is phylogenetically ancient to the early ray-finned fish sterlet (Acipenser ruthenus). Cell Calcium 61:22–31. https://doi.org/10.1016/j.ceca.2016.10.002

    Article  CAS  PubMed  Google Scholar 

  80. Mackrill JJ (2012) Ryanodine receptor calcium release channels: an evolutionary perspective. Adv Exp Med Biol 740:159–182. https://doi.org/10.1007/978-94-007-2888-2_7

    Article  CAS  PubMed  Google Scholar 

  81. Alzayady KJ, Sebe-Pedros A, Chandrasekhar R, Wang L, Ruiz-Trillo I, Yule DI (2015) Tracing the evolutionary history of inositol, 1, 4, 5-trisphosphate receptor: insights from analyses of Capsaspora owczarzaki Ca2+ Release Channel Orthologs. Mol Biol Evol 32(9):2236–2253. https://doi.org/10.1093/molbev/msv098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Simion P, Philippe H, Baurain D, Jager M, Richter DJ, Di Franco A, Roure B, Satoh N, Queinnec E, Ereskovsky A, Lapebie P, Corre E, Delsuc F, King N, Worheide G, Manuel M (2017) A large and consistent Phylogenomic dataset supports sponges as the sister group to all other animals. Curr Biol 27(7):958–967. https://doi.org/10.1016/j.cub.2017.02.031

    Article  CAS  PubMed  Google Scholar 

  83. Singla CL (1978) Locomotion and neuromuscular system of Aglantha digitale. Cell Tissue Res 188(2):317–327

    Article  CAS  PubMed  Google Scholar 

  84. Cario C, Malaval L, Hernandez-Nicaise ML (1995) Two distinct distribution patterns of sarcoplasmic reticulum in two functionally different giant smooth muscle cells of Beroe ovata. Cell Tissue Res 282(3):435–443

    Article  CAS  PubMed  Google Scholar 

  85. Lin YC, Grigoriev NG, Spencer AN (2000) Wound healing in jellyfish striated muscle involves rapid switching between two modes of cell motility and a change in the source of regulatory calcium. Dev Biol 225(1):87–100. https://doi.org/10.1006/dbio.2000.9807

    Article  CAS  PubMed  Google Scholar 

  86. Missiaen L, Parys JB, De Smedt H, Himpens B, Casteels R (1994) Inhibition of inositol trisphosphate-induced calcium release by caffeine is prevented by ATP. Biochem J 300(Pt 1):81–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sutko JL, Ito K, Kenyon JL (1985) Ryanodine: a modifier of sarcoplasmic reticulum calcium release in striated muscle. Fed Proc 44(15):2984–2988

    CAS  PubMed  Google Scholar 

  88. Mackrill JJ (2010) Ryanodine receptor calcium channels and their partners as drug targets. Biochem Pharmacol 79(11):1535–1543. https://doi.org/10.1016/j.bcp.2010.01.014

    Article  CAS  PubMed  Google Scholar 

  89. Silva CL, Cunha VM, Mendonca-Silva DL, Noel F (1998) Evidence for ryanodine receptors in Schistosoma mansoni. Biochem Pharmacol 56(8):997–1003

    Article  CAS  PubMed  Google Scholar 

  90. Day TA, Haithcock J, Kimber M, Maule AG (2000) Functional ryanodine receptor channels in flatworm muscle fibres. Parasitology 120(Pt 4):417–422

    Article  CAS  PubMed  Google Scholar 

  91. Maryon EB, Coronado R, Anderson P (1996) unc-68 encodes a ryanodine receptor involved in regulating C. elegans body-wall muscle contraction. J Cell Biol 134(4):885–893

    Article  CAS  PubMed  Google Scholar 

  92. Robertson AP, Clark CL, Martin RJ (2010) Levamisole and ryanodine receptors. I: a contraction study in Ascaris suum. Mol Biochem Parasitol 171(1):1–7. https://doi.org/10.1016/j.molbiopara.2009.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hassett CC (1948) Effect of ryanodine on the oxygen consumption of Periplaneta americana. Science 108(2797):138–139. https://doi.org/10.1126/science.108.2797.138

    Article  CAS  PubMed  Google Scholar 

  94. Sullivan KM, Scott K, Zuker CS, Rubin GM (2000) The ryanodine receptor is essential for larval development in Drosophila melanogaster. Proc Natl Acad Sci U S A 97(11):5942–5947. https://doi.org/10.1073/pnas.110145997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Frolov RV, Singh S (2012) Inhibition of ion channels and heart beat in Drosophila by selective COX-2 inhibitor SC-791. PLoS One 7(6):e38759. https://doi.org/10.1371/journal.pone.0038759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Scott-Ward TS, Dunbar SJ, Windass JD, Williams AJ (2001) Characterization of the ryanodine receptor-Ca2+ release channel from the thoracic tissues of the lepidopteran insect Heliothis virescens. J Membr Biol 179(2):127–141

    Article  CAS  PubMed  Google Scholar 

  97. Collet C (2009) Excitation-contraction coupling in skeletal muscle fibers from adult domestic honeybee. Pflugers Arch 458(3):601–612. https://doi.org/10.1007/s00424-009-0642-6

    Article  CAS  PubMed  Google Scholar 

  98. Lahm GP, Cordova D, Barry JD (2009) New and selective ryanodine receptor activators for insect control. Bioorg Med Chem 17(12):4127–4133. https://doi.org/10.1016/j.bmc.2009.01.018

    Article  CAS  PubMed  Google Scholar 

  99. Lea TJ, Ashley CC (1990) Ca2+ release from the sarcoplasmic reticulum of barnacle myofibrillar bundles initiated by photolysis of caged Ca2+. J Physiol 427:435–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gyorke S, Palade P (1992) Calcium-induced calcium release in crayfish skeletal muscle. J Physiol 457:195–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Brenner TL, Wilkens JL (2001) Physiology and excitation-contraction coupling in the intestinal muscle of the crayfish Procambarus clarkii. J Comp Physiol B 171(7):613–621

    Article  CAS  PubMed  Google Scholar 

  102. Xiong H, Feng X, Gao L, Xu L, Pasek DA, Seok JH, Meissner G (1998) Identification of a two EF-hand Ca2+ binding domain in lobster skeletal muscle ryanodine receptor/Ca2+ release channel. Biochemistry 37(14):4804–4814. https://doi.org/10.1021/bi971198b

    Article  CAS  PubMed  Google Scholar 

  103. Zhang JJ, Williams AJ, Sitsapesan R (1999) Evidence for novel caffeine and Ca2+ binding sites on the lobster skeletal ryanodine receptor. Br J Pharmacol 126(4):1066–1074. https://doi.org/10.1038/sj.bjp.0702400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Abe T, Ishida H, Matsuno A (1997) Foot structure and foot protein in the cross striated muscle of a pecten. Cell Struct Funct 22(1):21–26

    Article  CAS  PubMed  Google Scholar 

  105. Panfoli I, Burlando B, Viarengo A (1999) Cyclic ADP-ribose-dependent Ca2+ release is modulated by free [Ca2+] in the scallop sarcoplasmic reticulum. Biochem Biophys Res Commun 257(1):57–62. https://doi.org/10.1006/bbrc.1999.0405

    Article  CAS  PubMed  Google Scholar 

  106. Sugi H, Suzuki S (1978) Ultrastructural and physiological studies on the longitudinal body wall muscle of Dolabella auricularia. I. Mechanical response and ultrastructure. J Cell Biol 79(2 Pt 1):454–466

    Article  CAS  PubMed  Google Scholar 

  107. Devlin CL, Amole W, Anderson S, Shea K (2003) Muscarinic acetylcholine receptor compounds alter net Ca2+ flux and contractility in an invertebrate smooth muscle. Invertebr Neurosci 5(1):9–17. https://doi.org/10.1007/s10158-003-0023-3

    Article  CAS  Google Scholar 

  108. Shiwa M, Murayama T, Ogawa Y (2002) Molecular cloning and characterization of ryanodine receptor from unfertilized sea urchin eggs. Am J Physiol Regul Integr Comp Physiol 282(3):R727–R737. https://doi.org/10.1152/ajpregu.00519.2001

    Article  CAS  PubMed  Google Scholar 

  109. Lokuta AJ, Darszon A, Beltran C, Valdivia HH (1998) Detection and functional characterization of ryanodine receptors from sea urchin eggs. J Physiol 510(Pt 1):155–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nakajo K, Chen L, Okamura Y (1999) Cross-coupling between voltage-dependent Ca2+ channels and ryanodine receptors in developing ascidian muscle blastomeres. J Physiol 515(Pt 3):695–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Giannini G, Conti A, Mammarella S, Scrobogna M, Sorrentino V (1995) The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol 128(5):893–904

    Article  CAS  PubMed  Google Scholar 

  112. Mackrill JJ, Challiss RA, O'Connell DA, Lai FA, Nahorski SR (1997) Differential expression and regulation of ryanodine receptor and myo-inositol 1,4,5-trisphosphate receptor Ca2+ release channels in mammalian tissues and cell lines. Biochem J 327(Pt 1):251–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Holland EB, Goldstone JV, Pessah IN, Whitehead A, Reid NM, Karchner SI, Hahn ME, Nacci DE, Clark BW, Stegeman JJ (2017) Ryanodine receptor and FK506 binding protein 1 in the Atlantic killifish (Fundulus heteroclitus): a phylogenetic and population-based comparison. Aquat Toxicol 192:105–115. https://doi.org/10.1016/j.aquatox.2017.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Darbandi S, Franck JP (2009) A comparative study of ryanodine receptor (RyR) gene expression levels in a basal ray-finned fish, bichir (Polypterus ornatipinnis) and the derived euteleost zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 154(4):443–448. https://doi.org/10.1016/j.cbpb.2009.09.003

    Article  CAS  PubMed  Google Scholar 

  115. Lai FA, Liu QY, Xu L, el-Hashem A, Kramarcy NR, Sealock R, Meissner G (1992) Amphibian ryanodine receptor isoforms are related to those of mammalian skeletal or cardiac muscle. Am J Phys 263(2 Pt 1):C365–C372. https://doi.org/10.1152/ajpcell.1992.263.2.C365

    Article  CAS  Google Scholar 

  116. Jeyakumar LH, Ballester L, Cheng DS, McIntyre JO, Chang P, Olivey HE, Rollins-Smith L, Barnett JV, Murray K, Xin HB, Fleischer S (2001) FKBP binding characteristics of cardiac microsomes from diverse vertebrates. Biochem Biophys Res Commun 281(4):979–986. https://doi.org/10.1006/bbrc.2001.4444

    Article  CAS  PubMed  Google Scholar 

  117. Klitzner T, Morad M (1983) Excitation-contraction coupling in frog ventricle. Possible Ca2+ transport mechanisms. Pflugers Arch 398(4):274–283

    Article  CAS  PubMed  Google Scholar 

  118. Shiels HA, Sitsapesan R (2015) Is there something fishy about the regulation of the ryanodine receptor in the fish heart? Exp Physiol 100(12):1412–1420. https://doi.org/10.1113/EP085136

    Article  CAS  PubMed  Google Scholar 

  119. Cros C, Salle L, Warren DE, Shiels HA, Brette F (2014) The calcium stored in the sarcoplasmic reticulum acts as a safety mechanism in rainbow trout heart. Am J Physiol Regul Integr Comp Physiol 307(12):R1493–R1501. https://doi.org/10.1152/ajpregu.00127.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tijskens P, Meissner G, Franzini-Armstrong C (2003) Location of ryanodine and dihydropyridine receptors in frog myocardium. Biophys J 84(2 Pt 1):1079–1092. https://doi.org/10.1016/S0006-3495(03)74924-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Perin P, Botta L, Tritto S, Laforenza U (2012) Expression and localization of ryanodine receptors in the frog semicircular canal. J Biomed Biotechnol 2012:398398. https://doi.org/10.1155/2012/398398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJ, Fujiyama A, Harland RM, Taira M, Rokhsar DS (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538(7625):336–343. https://doi.org/10.1038/nature19840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bowes JB, Snyder KA, Segerdell E, Gibb R, Jarabek C, Noumen E, Pollet N, Vize PD (2008) Xenbase: a Xenopus biology and genomics resource. Nucleic Acids Res 36(Database issue):D761–D767. https://doi.org/10.1093/nar/gkm826

    Article  CAS  PubMed  Google Scholar 

  124. Mouton J, Marty I, Villaz M, Feltz A, Maulet Y (2001) Molecular interaction of dihydropyridine receptors with type-1 ryanodine receptors in rat brain. Biochem J 354(Pt 3):597–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cheng W, Altafaj X, Ronjat M, Coronado R (2005) Interaction between the dihydropyridine receptor Ca2+ channel beta-subunit and ryanodine receptor type 1 strengthens excitation-contraction coupling. Proc Natl Acad Sci U S A 102(52):19225–19230. https://doi.org/10.1073/pnas.0504334102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Samso M (2015) 3D structure of the Dihydropyridine receptor of skeletal muscle. Eur J Transl Myol 25(1):4840. https://doi.org/10.4081/ejtm.2015.4840

    Article  PubMed  PubMed Central  Google Scholar 

  127. McKay PB, Griswold CK (2014) A comparative study indicates both positive and purifying selection within ryanodine receptor (RyR) genes, as well as correlated evolution. J Exp Zool A Ecol Genet Physiol 321(3):151–163. https://doi.org/10.1002/jez.1845

    Article  CAS  PubMed  Google Scholar 

  128. Tanabe T, Beam KG, Powell JA, Numa S (1988) Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336(6195):134–139. https://doi.org/10.1038/336134a0

    Article  CAS  PubMed  Google Scholar 

  129. Tanabe T, Beam KG, Adams BA, Niidome T, Numa S (1990) Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature 346(6284):567–569. https://doi.org/10.1038/346567a0

    Article  CAS  PubMed  Google Scholar 

  130. Takekura H, Paolini C, Franzini-Armstrong C, Kugler G, Grabner M, Flucher BE (2004) Differential contribution of skeletal and cardiac II-III loop sequences to the assembly of dihydropyridine-receptor arrays in skeletal muscle. Mol Biol Cell 15(12):5408–5419. https://doi.org/10.1091/mbc.E04-05-0414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ahern CA, Bhattacharya D, Mortenson L, Coronado R (2001) A component of excitation-contraction coupling triggered in the absence of the T671-L690 and L720-Q765 regions of the II-III loop of the dihydropyridine receptor alpha(1s) pore subunit. Biophys J 81(6):3294–3307. https://doi.org/10.1016/S0006-3495(01)75963-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Leong P, MacLennan DH (1998) The cytoplasmic loops between domains II and III and domains III and IV in the skeletal muscle dihydropyridine receptor bind to a contiguous site in the skeletal muscle ryanodine receptor. J Biol Chem 273(45):29958–29964

    Article  CAS  PubMed  Google Scholar 

  133. Kugler G, Weiss RG, Flucher BE, Grabner M (2004) Structural requirements of the dihydropyridine receptor alpha1S II-III loop for skeletal-type excitation-contraction coupling. J Biol Chem 279(6):4721–4728. https://doi.org/10.1074/jbc.M307538200

    Article  CAS  PubMed  Google Scholar 

  134. Leong P, MacLennan DH (1998) A 37-amino acid sequence in the skeletal muscle ryanodine receptor interacts with the cytoplasmic loop between domains II and III in the skeletal muscle dihydropyridine receptor. J Biol Chem 273(14):7791–7794

    Article  CAS  PubMed  Google Scholar 

  135. Proenza C, O'Brien J, Nakai J, Mukherjee S, Allen PD, Beam KG (2002) Identification of a region of RyR1 that participates in allosteric coupling with the alpha(1S) (Ca(V)1.1) II-III loop. J Biol Chem 277(8):6530–6535. https://doi.org/10.1074/jbc.M106471200

    Article  CAS  PubMed  Google Scholar 

  136. Sorrentino V, Volpe P (1993) Ryanodine receptors: how many, where and why? Trends Pharmacol Sci 14(3):98–103

    Article  CAS  PubMed  Google Scholar 

  137. Yamazawa T, Takeshima H, Shimuta M, Iino M (1997) A region of the ryanodine receptor critical for excitation-contraction coupling in skeletal muscle. J Biol Chem 272(13):8161–8164

    Article  CAS  PubMed  Google Scholar 

  138. Perez CF, Mukherjee S, Allen PD (2003) Amino acids 1-1,680 of ryanodine receptor type 1 hold critical determinants of skeletal type for excitation-contraction coupling. Role of divergence domain D2. J Biol Chem 278(41):39644–39652. https://doi.org/10.1074/jbc.M305160200

    Article  CAS  PubMed  Google Scholar 

  139. Bannister RA, Sheridan DC, Beam KG (2016) Distinct components of retrograde Ca(V)1.1-RyR1 coupling revealed by a lethal mutation in RyR1. Biophys J 110(4):912–921. https://doi.org/10.1016/j.bpj.2015.12.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Takeshima H, Hoshijima M, Song LS (2015) Ca(2)(+) microdomains organized by junctophilins. Cell Calcium 58(4):349–356. https://doi.org/10.1016/j.ceca.2015.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Landstrom AP, Beavers DL, Wehrens XH (2014) The junctophilin family of proteins: from bench to bedside. Trends Mol Med 20(6):353–362. https://doi.org/10.1016/j.molmed.2014.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Nishi M, Sakagami H, Komazaki S, Kondo H, Takeshima H (2003) Coexpression of junctophilin type 3 and type 4 in brain. Brain Res Mol Brain Res 118(1–2):102–110

    Article  CAS  PubMed  Google Scholar 

  143. Woo JS, Srikanth S, Nishi M, Ping P, Takeshima H, Gwack Y (2016) Junctophilin-4, a component of the endoplasmic reticulum-plasma membrane junctions, regulates Ca2+ dynamics in T cells. Proc Natl Acad Sci U S A 113(10):2762–2767. https://doi.org/10.1073/pnas.1524229113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Reynolds JO, Quick AP, Wang Q, Beavers DL, Philippen LE, Showell J, Barreto-Torres G, Thuerauf DJ, Doroudgar S, Glembotski CC, Wehrens XH (2016) Junctophilin-2 gene therapy rescues heart failure by normalizing RyR2-mediated Ca2+ release. Int J Cardiol 225:371–380. https://doi.org/10.1016/j.ijcard.2016.10.021

    Article  PubMed  PubMed Central  Google Scholar 

  145. van Oort RJ, Garbino A, Wang W, Dixit SS, Landstrom AP, Gaur N, De Almeida AC, Skapura DG, Rudy Y, Burns AR, Ackerman MJ, Wehrens XH (2011) Disrupted junctional membrane complexes and hyperactive ryanodine receptors after acute junctophilin knockdown in mice. Circulation 123(9):979–988. https://doi.org/10.1161/CIRCULATIONAHA.110.006437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jiang M, Zhang M, Howren M, Wang Y, Tan A, Balijepalli RC, Huizar JF, Tseng GN (2016) JPH-2 interacts with Cai-handling proteins and ion channels in dyads: contribution to premature ventricular contraction-induced cardiomyopathy. Heart Rhythm 13(3):743–752. https://doi.org/10.1016/j.hrthm.2015.10.037

    Article  CAS  PubMed  Google Scholar 

  147. Munro ML, Jayasinghe ID, Wang Q, Quick A, Wang W, Baddeley D, Wehrens XH, Soeller C (2016) Junctophilin-2 in the nanoscale organisation and functional signalling of ryanodine receptor clusters in cardiomyocytes. J Cell Sci 129(23):4388–4398. https://doi.org/10.1242/jcs.196873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ito K, Komazaki S, Sasamoto K, Yoshida M, Nishi M, Kitamura K, Takeshima H (2001) Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1. J Cell Biol 154(5):1059–1067. https://doi.org/10.1083/jcb.200105040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Nakada T, Kashihara T, Komatsu M, Kojima K, Takeshita T, Yamada M (2018) Physical interaction of junctophilin and the CaV1.1 C terminus is crucial for skeletal muscle contraction. Proc Natl Acad Sci U S A 115(17):4507–4512. https://doi.org/10.1073/pnas.1716649115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Garbino A, van Oort RJ, Dixit SS, Landstrom AP, Ackerman MJ, Wehrens XH (2009) Molecular evolution of the junctophilin gene family. Physiol Genomics 37(3):175–186. https://doi.org/10.1152/physiolgenomics.00017.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mecklenburg KL, Freed SA, Raval M, Quintero OA, Yengo CM, O'Tousa JE (2015) Invertebrate and vertebrate class III myosins interact with MORN repeat-containing adaptor proteins. PLoS One 10(3):e0122502. https://doi.org/10.1371/journal.pone.0122502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kohno T, Wakabayashi K, Diener DR, Rosenbaum JL, Kamiya R (2011) Subunit interactions within the Chlamydomonas flagellar spokehead. Cytoskeleton (Hoboken) 68(4):237–246. https://doi.org/10.1002/cm.20507

    Article  CAS  Google Scholar 

  153. Sheerin UM, Schneider SA, Carr L, Deuschl G, Hopfner F, Stamelou M, Wood NW, Bhatia KP (2014) ALS2 mutations: juvenile amyotrophic lateral sclerosis and generalized dystonia. Neurology 82(12):1065–1067. https://doi.org/10.1212/WNL.0000000000000254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Topp JD, Gray NW, Gerard RD, Horazdovsky BF (2004) Alsin is a Rab5 and Rac1 guanine nucleotide exchange factor. J Biol Chem 279(23):24612–24623. https://doi.org/10.1074/jbc.M313504200

    Article  CAS  PubMed  Google Scholar 

  155. Plattner H (2015) Molecular aspects of calcium signalling at the crossroads of unikont and bikont eukaryote evolution – the ciliated protozoan Paramecium in focus. Cell Calcium 57(3):174–185. https://doi.org/10.1016/j.ceca.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  156. Hasegawa M, Fujiwara M (1993) Relative efficiencies of the maximum likelihood, maximum parsimony, and neighbor-joining methods for estimating protein phylogeny. Mol Phylogenet Evol 2(1):1–5. https://doi.org/10.1006/mpev.1993.1001

    Article  PubMed  Google Scholar 

  157. Kall L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338(5):1027–1036. https://doi.org/10.1016/j.jmb.2004.03.016

    Article  CAS  PubMed  Google Scholar 

  158. Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182

    CAS  PubMed  Google Scholar 

  159. Calpena E, Lopez Del Amo V, Chakraborty M, Llamusi B, Artero R, Espinos C, Galindo MI (2018) The Drosophila junctophilin gene is functionally equivalent to its four mammalian counterparts and is a modifier of a Huntingtin poly-Q expansion and the Notch pathway. Dis Model Mech 11(1):dmm029082. https://doi.org/10.1242/dmm.029082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mello CV, Lovell PV (2018) Avian genomics lends insights into endocrine function in birds. Gen Comp Endocrinol 256:123–129. https://doi.org/10.1016/j.ygcen.2017.05.023

    Article  CAS  PubMed  Google Scholar 

  161. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21(1):13–26

    Article  CAS  PubMed  Google Scholar 

  162. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. https://doi.org/10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Felsenstein J (1985) Confidence-limits on phylogenies – an approach using the bootstrap. Evolution 39(4):783–791

    Article  PubMed  Google Scholar 

  164. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  165. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  166. Sheard TM, Kharche SR, Pinali C, Shiels HA. 3D ultrastructural organisation of calcium release units in the avian sarcoplasmic reticulum. Journal of Experimental Biology. 2019 Jan 1:jeb-197640.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John James Mackrill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mackrill, J.J., Shiels, H.A. (2020). Evolution of Excitation-Contraction Coupling. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 1131. Springer, Cham. https://doi.org/10.1007/978-3-030-12457-1_12

Download citation

Publish with us

Policies and ethics